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I.  Methods 
A.  Cell lines, strains, and reagents.   
 
Bacteria 
A table of bacterial strains is given in Table S1. 
 
Mammalian Cells 
HCC827 parental (WT) and Gefitinib-resistant (GR6) cells, the latter of which were evolved by 
stepwise selection in increasing concentrations of Gefitnib, were obtained from J. Engelman 
(Massachusetts General Hospital) and grown in RPMI with 10% fetal bovine serum (FBS) and 
1% penicillin/streptomycin1.  HMLE cells stably expressing lentiviral short hairpin RNAs 
(shRNA) against GFP (control) and E-Cadherin were obtained from P. Gupta (Whitehead 
Institute for Biomedical Research) and grown in media consisting of equal parts (1) complete 
MEGM media (Lonza) and (2) DMEM with 10% fetal bovine serum (FBS) and 1% 
penicillin/streptomycin2.  A375 parental (WT) cells were obtained from ATCC and grown in 
RPMI with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin.  PLX4720-resistant 
A375 cells were engineered by stably overexpressing the kinase C-RAF, which can confer 
resistance to PLX4720 by overriding B-RAF dependence3.  C-RAF-expressing lentiviruses were 
produced as previously described4, 5.  A375 parental cells were infected at a 1:10 dilution of virus 
in 6-well plates in the presence of 7.5 µg/ml polybrene and centrifuged at 1200g for 1 hour at 37° 
C. Twenty-four hours after infection blasticidin (10 µg/ml) was added and cells were selected for 
72 hours, after which blasticidin was removed and growth inhibition assays were performed.   
 
Table S1:  Bacterial Strains 
 
*** Strain is the drug sensitive “wild type” 
 

Organism Cell Line / 
Strain 

Source Parental Strain Comments 

E. coli BW25113 6 *** Keio parent strain 

E. coli kwcmcip  (1 - 15) this work 
(Table S3) 

BW25113 lab evolved strain 

E. coli kwcmcipseq (1-6) this work 
(Table S3) 

BW25113 lab evolved strain 

E. coli kwdoxery (1-3) this work 
(Table S3) 

BW25113 lab evolved strain 

E. coli 748k0.1 7 *** clinical isolate 

E. coli 1 - 748MM 7 748k0.1 fluoroquinolone 
resistant 

E. coli 1 - 748 
 

7 748k0.1 fluoroquinolone 
resistant 

S. aureus Newman 8 ***  

S. aureus snnorr-1 this work Newman norfloxacin 
resistant 

E. faecalis V583 9 *** vancomycin 
resistant clinical 
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Organism Cell Line / 
Strain 

Source Parental Strain Comments 

isolate 

E. faecalis Dap-A 9 V583 daptomycin 
resistant 

E. faecalis Dap-B 9 V583 daptomycin 
resistant 

E. faecalis Dap-C 9 V583 daptomycin 
resistant 

S. cerevisiae yjhk112 10 ****  

S. cerevisiae yMM8 10 yjhk112 cycloheximide 
resistant 

 
 
B.  Drugs 
Drug solutions were made from solid stocks (Table S2). All antibiotic stock solutions were stored 
in the dark at -20◦ C in single-use daily aliquots. All drugs were thawed and diluted in sterilized 
media for experimental use.  
 
Table S2:  Drugs, Abbreviations, and Modes of Action 

Drug (source) Abbreviation  Class 

Chloramphenicol 
(MP Biomedicals) 

Cm Protein synthesis inhibitor (50 S target) 

Doxycycline 
(Sigma Aldrich) 

Dox Protein synthesis inhibitor (30 S target) 

Erythromycin 
(Sigma Aldrich) 

Ery Protein synthesis inhibitor (macrolide) 

Lincomycin  
(MP Biomedicals) 

Linc Protein synthesis inhibitor (50 S target) 

Ciprofloxacin 
(Sigma  Alderich) 

Cip DNA synthesis inhibitor 

Ofloxacin 
(Sigma Aldrich) 

Ofl DNA synthesis inhibitor 

Trimethoprim 
(Sigma Aldrich) 

Tmp Folic acid synthesis inhibitor 

Salicylate 
(Sigma Aldrich) 

Sal Pain reliever 

Ampicillin 
(Sigma Aldrich) 

Amp Cell wall synthesis inhibitor 

Daptomycin 
(Enzo Life Sciences) 

Dap Lipopeptide 

Norfloxacin Nor DNA synthesis inhibitor 



 
 4 

Drug (source) Abbreviation  Class 

(Sigma Aldrich  

Linezolid 
(Selleck Chemicals) 

Linez Oxazolidinone 

Cycloheximide 
(Ampresco) 

Cyclo Eukaryotic protein synthesis inhibitor 

5-Fluorocytosine 
(Sigma Aldrich) 

5-Fluor Antimycotic (DNA synthesis / RNA biosynthesis 
inhibitor) 

PLX4720 
(Selleck Chemicals) 

PLX B-Raf inhibitor 

Gefitinib 
(Selleck Chemicals) 

Gef EGFR inhibitor 

17-AAG 
(Selleck Chemicals) 

17-AAG Hsp90 inhibitor 

Dacarbazine 
(Sigma Aldrich) 

Dacarb Alkylating agent 

Etoposide 
(Sigma Aldrich) 

Etop Topoisomerase inhibitor 

5-Fluorouracil  
(Sigma Aldrich) 

5-FU Antimetabolite (apoptosis inhibitor) 

Paclitaxel 
(Sigma Aldrich) 

Pac Mitotic inhibitor 

 
 
C.  Growth Inhibition Assays 
 
Growth Assay for Bacteria 
We inoculated media (LB for E. coli, TSB for S. aureus, BHI for E. faecalis) from a single 
colony and grew the cells overnight  (12 h at 30°C with shaking at 200 rpm for E. coli, S. aureus; 
no shaking for E. faecalis). Following overnight growth, stationary phase cells were diluted 
(~5000 fold for E. coli, S. aureus; ~1000 fold for E. faecalis) in media. Following the initial 
dilution, S. aureus and E. faecalis were grown in drug free media for 1 hour prior to adding drugs 
and transferring to 96 well plates.  We transferred E. coli to 96-well plates (round bottom, 
polystyrene, Corning) immediately following dilution.  For each experiment, we set up a two-
dimensional matrix of 1 or 2 drug combinations in each of four 96-well plates (165-190 µl media 
per well). For the remainder of the experiment after the addition of drugs  (~10-12 h), cells were 
grown at 30°C (with shaking at 1000 rpm on four identical vibrating plate shakers for E. coli; no 
shaking for E. faecalis). A600 (absorbance at 600 nm, proportional to optical density OD) was 
measured at 15-25 min intervals (with one exception; see below) using a Wallac Victor-2 1420 
Multilabel Counter  (PerkinElmer) combined with an automated robotic system  (Twister II, 
Caliper Life Sciences) to transfer plates between shakers and the reader.  Growth rates in bacteria 
were determined by fitting background-subtracted growth curves (A600 vs. time) in early 
exponential phase  (approximately 0.01 < A600 <0.1) to an exponential function  (MATLAB 7.6.0 
curve fitting toolbox, The Mathworks). For S. aureus with Nor-Cm (Figure 5), effective 
exponential growth rates were estimated using background subtracted A600 measurements at times 
t = 2 hours and t = 6 hours; true exponential growth curves are therefore not required for this 
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particular assay, which is instead similar to traditional viability assays that compare cell number 
at the end of the experiment (see mammalian growth assays, below).  Growth rates were 
normalized by the growth of cells in the absence of drugs.  Error bars, unless otherwise noted, are 
taken to represent +/- one standard error of the fitted parameter.   
 
Growth Assay for Yeast 
We inoculated media (SAB) from a single colony and grew the cells overnight  (12 h at 30°C 
with shaking at 200 rpm). Following overnight growth, stationary phase cells were diluted  
(~5000 fold) in media.  Because S. cervesaie experiments required longer incubation times (~24 
hours), evaporation was not negligible, and we therefore measured growth curves using Bioscreen 
C instrument (Growth Curves USA), which uses specialized plates that prevent evaporation.  For 
these experiments, we used 100-well plates specific to the Bioscreen C instrument and set up a 
two-dimensional matrix of 1 or 2 drug combinations in each plate (165-190 µl media per well). 
For the remainder of the experiment after the addition of drugs  (18+ hours for S. cervesaie), cells 
were grown at 30°C.  A600 was measured at 15-25 min intervals using the Bioscreen C (Growth 
Curves USA).  Growth rates were determined by fitting background-subtracted growth curves  
(A600 vs. time) in early exponential phase  (approximately 0.01 < A600 <0.1) to an exponential 
function  (MATLAB 7.6.0 curve fitting toolbox, The Mathworks).  
 
Growth assay for Mammalian Cells 
Cells were trypsinized, counted, and seeded into 96-well plates at 2,500 cells/well.  Twenty-four 
later, DMSO or concentrated dilutions of indicated drugs (in DMSO) were added to cells (1:1,000 
in standard media) to yield the indicated final drug concentrations. Cell viability was measured 4 
days after drug addition using the Cell Titer Glo® luminescent viability assay (Promega). 
Viability was calculated as the percentage of control (untreated cells) after background 
subtraction. Three replicates were performed for each drug/concentration.  
 
D.  Estimation of Experimental Uncertainty and Example Growth Curves 
 
Bacteria 
In bacteria, growth inhibition assays are based on exponential fits to time series of absorbance 
(see Section IC).  Because of the large number of drug dosages needed to estimate response 
surfaces, it is not practical to perform a large number of replicates at each dosage.  However, to 
estimate the experimental uncertainty in these measurements, particularly for high drug dosages, 
we performed replicate experiments for each of the drugs most commonly used in the study.  In 
each experiment, we exposed approximately 10 replicate cultures to the same concentration of a 
drug and then estimated the exponential growth rate for all replicates.  In all cases in bacteria, the 
standard deviation, σ, of the growth rate measurements was small (σ ≤ 0.06 in terms of relative 
growth rate, and typically much smaller).  The uncertainty, which represents experiment-to-
experiment variability—was small even in cases where the drugs have steep dose-response curves 
(e.g. ciprofloxacin, σ ≤ 0.03, and ampicillin, σ ≤ 0.06) and even for high concentrations of the 
drugs. In Figures 5 and S4, we have included error bars that indicate the largest standard 
deviation measured for the two drugs in each given experiment.   While the current study is 
limited the study of monophasic responses, some drugs used here (e.g. ciprofloxacin) are known 
to produce biphasic responses under some conditions.  Therefore, we note that extending this 
scaling approach to include biphasic responses remains an interesting avenue for future work. 
 
Cancer Cells 
Growth estimates in cancer cells rely on a standard luminescence based cell viability assay (Cell 
Titer Glo®).  At each dosage in the study, we performed at least 3 replicates.  Reported growth 
estimates are a mean of replicates, and uncertainties are estimated as the standard error of the 
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mean.  In Figure S4, error bars are typically smaller than the size of the data points.  Errors are 
slightly larger for NSCLC in Figure 5 and for cancer stem cells in Figure 6. 
 
E.  Evolved Drug Resistant Mutants in E. coli and S. aureus 
Drug resistant E. coli mutants were isolated by first diluting liquid cultures of wild-type cells  
(BW25113 in stationary phase) 1000-fold into 96 individual 1 mL cultures on a single deep well 
plate, with each well supplemented with a combination of chloramphenicol and ciprofloxacin or 
doxycycline and erythromycin (Table S3). Cultures were grown at 30°C with shaking and diluted 
1000x into fresh media (with drugs) every 24 hours for a total of 6 days (approximately 60 
generations).  Aliquots  (1 µl) of each culture were streaked onto drug free agar plates and grown 
overnight at 30 degrees.  A single colony from each plate was then selected, grown in LB for 
approximately 12 hours, and then frozen in 15% glycerol at -80°C.  Frozen cultures were used to 
streak LB plates, and all experiments were performed on cultures grown from a single colony 
isolated from these plates.  S. aureus norfloxacin resistant mutants were isolated on TSA (Trypric 
soy agar, BD) plates containing 4 ug/ml Nor, followed by spreading of overnight culture of 
Newman strain. 
 

 

 Table S3:  Mutant Selection Conditions  

Mutant Selection Condition (gens = generations) Drug Pair Used 
For Experimental 
Response Surface 

kwcmcip1 
 

60 gens in [Cm]=1.65 ug/mL Sal-Cm 

kwcmcip2  60 gens in [Cm]=1.55 ug/mL and [Cip]=3 ng/mL Sal-Cm 

kwcmcip3  60 gens in [Cm]=1.65 ug/mL Sal-Cm 

kwcmcipseq1  60 gens in [Cip]= 9 ng/mL, then  
60 gens in [Cm]=0.375 ug/mL 

Cm-Cip 

kwcmcipseq2  60 gens in [Cip]= 10 ng/mL, then 
60 gens in [Cm]=0.775 ug/mL 

Cm-Cip 

kwcmcipseq3  60 gens in [Cip]= 8 ng/mL, then 
60 gens in [Cm]=1.3 ug/mL 

Cm-Cip 

kwcmcipseq4  60 gens in [Cm]=1.55 ug/mL,  then 
60 gens in [Cip]= 3 ng/mL 

Cm-Cip 

kwcmcip4  60 gens in [Cip]=7 ng/mL Cm-Cip 

kwcmcip5  60 gens in  [Cm]=0.375 ug/mL and [Cip]=9 ng/mL Cm-Cip 

kwcmcip6  60 gens in  [Cm]=0.775 ug/mL and [Cip]=10 ng/mL Cm-Cip 

kwcmcip7  60 gens in  [Cm]=1.3 ug/mL and [Cip]=8 ng/mL Cm-Cip 

kwcmcip8  60 gens in  [Cm]=1.55 ug/mL and [Cip]=3 ng/mL Cm-Cip 

kwcmcip9  60 gens in  [Cm]=1.65 ug/mL Cm-Cip 

kwcmcip10  60 gens in [Cip]=7 ng/mL Cm-Cip 

kwcmcip11  60 gens in  [Cm]=0.375 ug/mL and [Cip]=9 ng/mL Cm-Cip 
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F.  Alternative Measures of Drug Interactions 
In an effort solely to illustrate the diversity of possible dose-response surfaces (figure 1), we 
quantified drug interactions relative to Bliss independence11, 12.  The choice of Bliss independence 
as a null model is purely illustrative, and our general scaling model does not use Bliss 
independence to make predictions. However, we note that there are alternative ways to quantify 
and illustrate drug interactions once the response surface is known.  In Figure S1 we re-plot the 
interactions from Figure 1 relative to Loewe additivity13, another common reference model (see 
below).  The specific drug interactions may depend on the null model used (Bliss, as in Figure 1, 
or Loewe, as in Figure S1).   However, in the context of this work, the choice of Bliss or Loewe 
as a reference model is used only to illustrate that response surfaces—and therefore traditional 
measures of drug interactions—do not appear to follow any simple pattern upon acquisition of 
resistance.  Again, we stress that our general scaling model allows us to calculate the full dose 
response surface and do not depend on whether Bliss or Loewe is chosen to illustrate the 
interactions. 
 
Quantifying Drug Interactions Based on Loewe Additivity 
In addition to the Bliss-based interaction metric used in Figure 1, one can quantify drug 
interactions relative to Loewe additivity. Interactions based on Loewe additivity are closely 
related to the shape of the isoboles in 2-drug space14.  Straight lines represent non-interacting 
drugs, and this model is widely known to be appropriate for the hypothetical experiment where 
one takes a single drug, divides it into two samples, and treats each sample as an individual drug.  
Mathematically, Loewe additivity corresponds to13 
 

I = D1
D1,g

+
D2

D2,g

=1 , 

where D1,g (D2,g) is the concentration of drug 1 (2) alone that leads to given level of growth, g, and 
D1 (D2) is the concentration of drug 1 (2) in a mixture of both drugs that leads to that same level 
of growth.  I<1 corresponds to synergy, and I>1 corresponds to antagonism.  Because the single-
drug dose response curves in this study can be approximated as Hill-like functions, it is 
straightforward to calculate I for each point in the dose-response space—that is, at each measured 
value of growth—by inverting the single-drug response functions to get D1,g and D2,g.   

 
For comparison with Figure 1, we plot the interaction as I-1 (positive is antagonism, negative is 

kwcmcip12  60 gens in  [Cm]=0.375 ug/mL and [Cip]=9 ng/mL Cm-Cip 

kwcmcip13  60 gens in  [Cm]=0.775 ug/mL and [Cip]=10 ng/mL Cm-Cip 

kwcmcip14  60 gens in  [Cm]=1.3 ug/mL and [Cip]=8 ng/mL Cm-Cip 

kwcmcip15  60 gens in  [Cm]=1.55 ug/mL and [Cip]=3 ng/mL Cm-Cip and Sal-Cm 

kwcmcipseq5  60 gens in [Cm]=0.375 ug/mL, then 
60 gens in [Cip]= 9 ng/mL 

Cm-Cip 

kwcmcipseq6  60 gens in [Cm]=0.775 ug/mL, then 
60 gens in [Cip]= 10 ng/mL 

Cm-Cip 

kwdoxery1 60 gens in  [Dox]=0.6 ug/mL  Dox-Ery 

kwdoxery2 60 gens in  [Dox]=0.3 ug/mL and [Ery]=11.3  ug/mL Dox-Ery 

kwdoxery3 60 gens in  [Dox]=0.15 ug/mL and [Ery]=22.5  ug/mL Dox-Ery 
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synergy) in Figure S1.  The interaction is, by definition, zero when only one drug is present or 
when the drugs are Loewe additive. 
 
 
 
 
II.   Model for Two-Drug Interactions 
A.   Description of the Model 
To evaluate the effect of drug-pair interaction, it is standard in pharmacology to use a null 
hypothesis such as Bliss independence11, 13, 15. Bliss independence consists of treating the effect of 
the two drugs independently in a probabilistic sense. Under this condition, the growth rate of two 
non-interacting drugs is: 
 

g12 = g1(D1)g2 (D2 )    
 

where gi represents the growth rate of cells in presence of the drug i,  normalized by the growth 
rate in the absence of drug. Here the term ‘growth’ is loosely defined and may represent different 
measures of cell proliferation depending on the species under study13, 15, 16 (see Section I, above). 
When two drugs interact, the resulting growth rate is either larger or smaller than that obtained 
from the null model. Here we extend this null model and explicitly account for drug interactions 
by introducing a drug-drug coupling function that modifies the concentration of drug D2 into an 
effective concentration, D2,eff, that depends on drug 1. 
 
     g12 = g1(D1)g2 (D2,eff )  
 
The model is fully specified by three one-dimensional functions. The two toxicity functions, g1 
and g2, depend on D1 and D2, respectively, and describe the toxic effects of the drugs alone on 
growth.  The drug-drug coupling function, D2eff/D2, depends only on D1 and accounts for drug 
interactions by allowing the presence of one drug (D1) to modify the effective concentration, and 
hence the toxicity, of the other (D2). We refer to the set of functions g1, g2, and D2eff/D2 as "basis" 
functions because they define the entire two-dimensional response surface g12.   
 We have chosen to break the symmetry between the two drugs (D1 affects D2eff, but not 
vice versa) because in many observed drug interactions, such as the suppression between 
antibiotics14, 17, one drug asymmetrically affects the other. However, this model is also 
appropriate for many symmetric drug interactions (see Section III for examples).  We note that 
this model would need to be generalized if the drugs mutually suppressed one another, as 
describing such a growth surface would require two coupling functions.  However, to our 
knowledge, no mutually suppressive drug interactions have been reported. Toxicity functions are 
described by Hill functions, which are common models of dose-response curves13 and may reflect 
the binding of drugs to some intracellular substrate. We stress that the form of Equation (1), 
where the effect of the two drugs can be decomposed into a product, arises in several contexts 
where mechanistic details are known, such as multi-antibiotic resistance18 and, more generally, in 
models of single enzyme inhibition19 (see Section III).   While the model (Equation 1, main text) 
provides an excellent description of these well-characterized systems, molecular details and the 
associated form of D2eff/D2 (or C(D1)) are not, in general, known. In the absence of mechanistic 
insight, we use the model but must infer the coupling function D2eff/D2 directly from experimental 
growth data (below). Importantly, this model does not introduce the usual artifact arising from the 
standard Bliss independence model. For example, it is well-known that standard Bliss 
independence introduces an artifactual result when one attempts to measure the interaction of 
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drug with itself (more in Section IV). However, the model presented in this paper uses a coupling 
function to encapsulate drug interaction, which circumvents this artifactual behavior. 
 
B.  Estimation of Model Parameters and Coupling Functions for Pairwise Drug Interactions 
Single drug toxicity functions (relative growth vs. drug concentration) were fit to Hill functions  
(see Fig 2) using nonlinear least squares fitting.  Drug-drug coupling functions were then found 
by using a series of 5 distinct parameterizations (and an additional non-interacting model, Bliss 
independence) for the effective concentration of one drug. To infer the coupling functions from 
the data, both single drug toxicities were constrained to be of the Hill form previously measured. 
For each pair of drugs, parameters for the coupling function for each of the 5 parameterizations 
were determined by nonlinear least squared fitting, either assuming uni-directional drug 1 to drug 
2 coupling or by assuming uni-directional drug 2 to drug 1 coupling.  The Akaike Information 
Criteria  (AIC)20 was therefore determined for each of the 2*5+ 1 (Bliss) = 11 parameterizations, 
and the coupling function was taken to be the AIC best parameterization among the 11 options. 
We note that the drug-drug coupling can be extended to a bi-directional coupling, but the uni-
directional coupling provides an excellent fit for all drug pairs tested (Table S4, S5).   We also 
stress that each parameterization of the coupling function in Table S4 can be written in the form 
Di,eff/Di = (1+C(Dj))-1.  The forms given in Table S4 are rearranged for notational convenience.  
Additional technical details are covered below. 
 
C.  Model Selection and Multi-Model Inference 
In order to select a parameterization of a two-drug interaction supported by the data, we use 
Akaike Information Criteria (AIC) methods to achieve an appropriate balance between parsimony 
and accuracy20.  For a given two-drug interaction, we begin by fitting the two single drug toxicity 
functions (g1(D1) and g2(D2)) to a Hill form common in pharmacology literature13: 
 

  (S1)

 

 
 
 
where Ki  is the concentration at which the drug has half-maximal effect (often known as the IC50;  
we choose K for economy of notation).  With the single drug toxicity functions determined, we 
then infer the drug-drug coupling function using a series of parameterizations, as described 
above.  
 
Table S4: Parameterizations for Drug-Drug Coupling 
 

Parameterization Abbreviation Equation n = Number 
parameters 

(ci) 

Pointwise D1  PW1 D2, eff
D2

= 1
1+ci  

Number of D1 
concentrations 

Polynomial 2 D1 P21 D2, eff
D2

= 1+c1D1+c2D1
2

 
2 

Polynomial 3 D1 P31 D2,eff

D2

=1+c1D1+c2D1
2+c3D1

3 3 

gi x( )= 1
1+ x /Ki( )ni
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Parameterization Abbreviation Equation n = Number 
parameters 

(ci) 

 

Saturating D1 Sat1 D2,eff

D2

= 1

1+c1
D1

D1+c2

!

"
#

$

%
&

 
2 

Tanh D1 Tanh1 D2,eff

D2

=1+c1tanh c2D1( )  
2 

Pointwise D2 PW2 D1,eff
D1

= 1
1+ci  

Number of D2 
concentrations 

Polynomial 2 D2 P22 D1,eff
D1

= 1+c1 D2+c2D2
2

 
2 

Polynomial 3 D2 P32 D1,eff
D1

=1+c1D2+c2D2
2+c3D2

3

 

3 

Saturating D2 Sat2 D1,eff
D1

= 1

1+c1
D2

D2+c2

!

"
#

$

%
&

 
2 

Tanh D2 Tanh2 D1,eff
D1

=1+c1tanh c2D2( )  
2 

Bliss independent Bliss D1,eff
D1

=1;
D2,eff

D2

=1;  
0 

** For all models, we constrain (Di,eff / Di)  to be greater than or equal to 0.  The expressions in 
the table represent one simple way of writing each parameterization.  Note, however, that each 
model can be trivially re-written in the form Di,eff/Di = (1+C(Dj))-1 .  For example, model P21 is 
equivalent to D2,eff/D2 = (1+C(D1))-1, with C(D1)=(1+c1 D1 + c2 D1

2)-1-1.  Note also that ci variables 
(lower case c) are fitting parameters and should not be confused with the function C(D1). 
 
For each model listed above (Table S4), we calculate the AIC.  AIC is given by 
 

      (S2) 
 
where log L ĉi | y( )( ) is the log likelihood function evaluated at its maximum value, y is the data, 

and ĉi denotes the maximum likelihood estimates for the entire set of parameters.  Note that n' = 
n+1 is the true number of parameters of the model, because each model has an implicit parameter 
that corresponds to the variance of the error distribution.  The AIC is an estimate of the 
expectation value of the relative Kullback-Leibler (KL) divergence between the fitted model and 
the "true mechanism" generating the observed data.  The model with the lowest AIC value among 

AIC =−2log L ĉi | y( )( )+2n'
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a set of models is considered the best model in that it minimizes the KL divergence between the 
model and statistical mechanism underlying the data.  For the least squares case, AIC reduces to 
 

   (S3)
 

 
 
with N the number of observations and σ̂ 2 the maximum likelihood estimator of the error 
variance.  In practice, we use a small sample estimator of AIC which includes an additional bias 
correction term 
 

       
 (S4) 

 
 

While the absolute value of the AIC has little meaning, the difference in AIC values between two 
models does contain important information.  These differences can be converted to Akaike 
weights, wi, defined by 
 

       (S5)

 

 
where δi ≡ AICi − AICmin and the index i runs over the set of models.  Because exp −δi / 2( ) is 
proportional to the likelihood of model i given the data, each Akaike weight can be interpreted as 
a measure of the evidence in favor of model i, given that one model in the set is KL best model of 
the set.  Table S5 provides the AIC weights for each of the models listed above for 20 different 
two-drug combinations.  Example coupling functions are shown in Figure 2.   

In Figure 3, the pointwise models (PW1 or PW2) are used for directly comparing the 
coupling functions from wild type and mutant cells, regardless of Akaike weight, because these 
models are more directly connected with the raw data and do not involve fitting to some pre-
assigned functional form.  Instead, the pointwise models define the drug-drug coupling for each 
concentration of Di.  While these pointwise functions may be suffer from statistical overfitting, 
they nevertheless offer a direct comparison that requires no assumptions about the structure of the 
noise or any pre-defined functional forms (other than Equation 1, which defines the overall 
model).  We also note that using the Akaike-best coupling functions for E. coli mutants in Figure 
3A reduces the size of the error bars and does not modify the qualitative scaling result.        

Finally, we note that when directly comparing the coupling functions of mutants and wild 
type cells, we do not consider the coupling function at large concentrations of the inducer (Di > 
Ki).  At those high concentrations, the growth is dominated by the toxicity of the inducing drug, 
and the value of the coupling function has relatively little effect on the overall growth.  Therefore, 
the coupling function is under-constrained in that region and is difficult to estimate accurately.  
 
 
Table S5:  Two-drug Fitting Data (E. coli) 
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Drug 1 Drug 2 PW1 P21 P31 Tanh1 Sat1 PW2 P22 P32 Tanh2 Sat2 Bliss R2 R2 Resp Surf AIC Diff AIC Weight
Cm Tmp 0.00 0.74 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.91 41.17 1
Cm Ofl 0.00 0.04 0.21 0.57 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.62 183.72 1
Cm Cip 0.00 0.55 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.64 349.45 1
Tmp Ofl 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.93 49.91 1
Tmp Linc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.86 0.54 112.49 1
Sal Linc 0.01 0.01 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.36 213.15 1
Sal Ery 0.00 0.00 0.00 0.00 0.00 0.19 0.62 0.18 0.00 0.00 0.00 0.94 0.84 83.42 1
Sal Dox 0.00 0.03 0.23 0.00 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.85 *** 182.81 1
Sal Cm 0.01 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.59 205.36 1
Ofl Linc 0.00 0.00 0.00 0.00 0.00 0.01 0.65 0.34 0.00 0.00 0.00 0.97 0.80 205.09 1
Ery Tmp 0.00 0.00 0.00 0.00 0.00 0.01 0.73 0.26 0.00 0.00 0.00 0.98 0.92 118.46 1
Ery Linc 0.00 0.00 0.00 0.00 0.00 0.02 0.38 0.60 0.00 0.00 0.00 0.94 0.41 217.96 1
Dox Linc 0.00 0.00 0.00 0.00 0.00 0.04 0.69 0.28 0.00 0.00 0.00 0.98 0.86 180.05 1
Ery Dox 0.00 0.00 0.00 0.00 0.00 0.04 0.29 0.11 0.21 0.36 0.00 0.98 0.98 8.76 0.98
Ery Cm 0.01 0.02 0.50 0.00 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.94 37.32 1
Dox Cm 0.01 0.30 0.10 0.24 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.96 120.68 1
Dox Tmp 0.01 0.05 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.78 43.89 1
Dox Ofl 0.00 0.72 0.24 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.96 0.81 167.44 1
Cm Linc 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.86 116.32 1
Sal Cip 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.11 0.32 0.24 0.00 0.98 0.08 368.19 1  

 
The Akaike weights (columns 3-13) for the model (Equation 1) with each of the drug-drug 
coupling models in Table S4 are given for 20 different two-drug combinations.  The column R2 is 
the coefficient of determination (R2) for the Akaike best model from Table S4.  The column R2 
Resp Surf is the corresponding R2 value for the popular response surface model from 
pharmacology13.  In the response surface model, which is based on Loewe additivity, the single 
drug responses are Hill-like functions and the coupling between drugs is captured by a single 
additive term with an interaction parameter typically denoted by α (see Equation 5 in reference 
13).  For both our model (Equation 1) and the response surface model, the parameters of the 
single drug dose-response surfaces are fit first, followed by an estimate of the interaction 
parameter(s).  AIC Diff gives the AIC difference between the response surface model and the 
model (Equation 1) with Akaike-best coupling, and the last column (AIC weight) gives the Akaike 
weight in favor of Equation 1 (against the response surface model). 
 
 
 
D.  Scaling Relations and Estimation of Model Parameters for Drug-Resistant Mutants 
Because resistant mutants represent a perturbation of the wild-type phenotype, we hypothesized 
that mutant toxicity functions and coupling functions were re-scalable to wild type toxicity and 
coupling functions under the following one-parameter transformations 

D1→D1 ' = a1D1
D2 →D2 ' = a2D2

C→C ' = a3C
 

where a1, a2, and a3 are scaling parameters describing the increase/decrease in resistance to drug 
1, the increase/decrease in resistance to drug 2, and the increase/decrease in drug-drug coupling at 
a given drug toxicity, respectively in the resistant mutant. Note that contributions to the growth 
response g12 from the coupling function C(D1) become negligible as D1 increases because the 
toxicity of D1 dominates the response. 
 
 
III.  Mechanistic Models and Biochemical Simulations 
 Throughout this study, we model the interactions between drugs by assuming that the 
presence of one drug increases or decreases the effective concentration of the other drug 
(Equation 1, main text).  In the following sections, we describe two well-studied examples where 
this functional form naturally arises from mechanistic considerations (sections A and B).  Finally, 
we demonstrate that the model also describes more complex models of biochemical reaction 
networks (sections C-D).  We note that Figure panels S2B-E (and previous work21) suggest a 
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relationship between underlying network topology and the drug-drug coupling function and 
therefore provide a possible intuitive basis for our scaling results.   
 
A.  Multiple Antibiotic Resistance System 
 In the case of two drugs interacting through the multiple antibiotic resistance (MAR) 
operon22, an efflux-based system of intrinsic bacterial resistance, the effects of the drugs are well-
described by a model of the form Equation 1 over the entire two-dimensional space of dosage 
combinations18.   In this specific system, C(D1) is a binding function whose form is determined 
entirely by the (independently measured) mar promoter activity18.  In fact, the Akaike best ad-hoc 
coupling function C(D1) fit directly from the growth data—without any prior knowledge of 
mechanism—is functionally identical to the mar promoter activity induction curve (Figure S2B).  
Notably, the functional form of C(D1) also describes the effects of mutations that increase or 
decrease efflux pumping18, and only the magnitude (maximum value) of C(D1) is changed.  In 
this case, this magnitude reflects the microscopic factors such as efflux dynamics and substrate 
specificity that determine the rate at which the second drug is removed from the cell18. 
 
B.  Inhibitors of a Single Enzymatic Reaction 
  A model of the form Equation 1 also arises in perhaps the simplest possible biochemical 
scenario:  that of two linear inhibitors of a single enzymatic reaction. Following 19, we consider 
the case of two inhibitors, D1 and D2, and assume that parameters α and β describe how the 
binding of inhibitors D1 and D2, respectively, affect the affinity of the enzyme for its substrate, S  
(α>1 or β >1 hinders binding, α<1 or β <1 facilitates binding).  In addition, the parameter γ 
describes how the binding of one inhibitor affects the binding of another (γ>1 hinders binding, 
γ<1 facilitates binding).  Following typical equilibrium assumptions19, it is straightforward to 
show that the normalized reaction velocity, g12, in the presence of the two inhibitors together  is 
given by 

 
g12 = g1(D1)g2 (D2,eff ) = g1(D1,eff )g2 (D2 ) ,    (S6) 

 
where gi =(1+Di/Ki)-1 is the normalized reaction velocity in the presence of inhibitor i, Ki is the 
concentration of drug at which velocity is half maximal, Di,eff=Di(1+C(Dj))-1 and  
 

 
 

C(Di ) =
(κ −1)Dj

Dj +κ
 

       (S7) 
 
with κ= γ (1+S/ α Ks) (1+S/ β Ks) (1+S/ α β Ks)-1(1+S/Ks)-1 and Ks is the binding constant of 
enzyme to substrate.  Note that changing the microscopic parameters S, α, β, and γ can alter the 
scale (in Dj) and the magnitude (κ -1) of C(Dj);  however, the functional form S7 remains the 
same (a hyperbolic binding function).  For κ>1 the interaction between the drugs is antagonistic, 
and the presence of one drug decreases the effective concentration of the other.  For κ<1, the 
interaction is synergistic and the presence of one drug increases the effective concentration of the 
other.  Note that this model includes both Bliss independence11 (γ=1 and either α=1 or β=1) as 
well as Loewe additivity23 (γ!∞), the two most commonly used null models for non-interacting 
drugs, as special cases. 

We stress that drug interactions in this simple model can be described by an effective 
concentration reduction of one drug, and it therefore takes the form of Equation 1 (or S6).  
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Despite the inherent symmetry in the microscopic model, an asymmetric functional form like S6 
naturally arises, and the symmetry allows one to choose either D1,eff or D2,eff  as the coupling 
function.  We find that some drug pairs targeting the same cellular process (e.g. translation by the 
ribosome), such as doxycycline and erythromycin or doxycycline and chloramphenicol, are in 
fact well-described by a drug-drug coupling function similar to S7 (κ ~ 0.35 or 0.65, respectively) 
that is approximately symmetric in the choice of drug for Di,eff (Figure S2C).  Note, however, that 
in these cases, because the single drug response functions gi(Di) are given by Hill-like functions 
with Hill coefficients ni>1, one should be cautious applying a direct microscopic interpretation of 
κ in terms of S, α, β, and γ.  Interestingly, however, the binding of chloramphenicol has been 
shown, in vitro, to increase the binding of erythromycin to ribosomes24, consistent with this 
interpretation.  Under in vivo conditions, these drug pairs are approximately kinetically 
equivalent25, 26 and exhibit Loewe additive isoboles.  Therefore, the mathematical effect of finite κ 
in S7 is to offset the inherent curvature of the gi functions and produce linear isoboles.  Therefore, 
while the functional form S7 remains an excellent model of the drug interaction (Figure S2C), the 
model does not necessarily indicate that synergy arises from facilitated binding at the ribosome. 
 
 
C.  Inhibitors of Larger Enzymatic Networks  
 In addition to the MAR system and the case of single enzyme inhibitors, the model, 
Equation 1 (main text), can be used to describe mutual inhibition of more complex biochemical 
networks.  To explore this question, we numerically simulated the effects of simultaneous 
inhibitors on the toy network model in ref. 21.  The network consists of two pathways (A and B) 
and includes common network motifs, including negative feedback, bypass, and parallel reactions 
(21 and Figure S2D).  Drugs are taken to be competitive inhibitors of the enzymatic reactions 
defining the network.  Indeed, we find that a model of the form Equation 1 provides an excellent 
description of the effects of mutual inhibitors in to all reactions in this network. Interestingly, we 
find that the inferred drug-drug coupling functions Di,eff/Di (which, as a reminder, are related to 
C(Dj) through Di,eff=Di(1+C(Dj))-1), are specific to the underlying network architectures of the 
targeted reactions (  S15).  For example, inhibitors that target two necessary and parallel 
pathways (such as A and B) lead to monotonically decreasing D2eff (Figure S2D, e.g. drug pairs 
15 and 10, or 14 and 4), inhibitors targeting parallel but not simultaneously required pathways 
lead to monotonically increasing D2eff (Figure S2D, e.g. drug pairs 5 and 2, or 5 and 3).   
 
 
D.  Non-monotonic Drug-Drug Coupling:  Negative Feedback and Steep Dose Response 
Interestingly, we find non-monotonic drug-drug coupling functions can arise in at least two 
situations:  1) the targeted nodes involve negative feedback among reactions, and 2) the 
individual drugs have steep dose response curves.  In case 1, the specific type of negative 
feedback appears to play a role in the form of the drug-drug coupling (Figure S2E).  In case 2, 
steep single-drug dose response profiles can lead to non-monotonic coupling functions, even 
when the response surface, overall, is constrained to be very simple, such as Loewe additive.  In 
that case, the curvature of the coupling functions compensates for the sigmoidal shape of the dose 
response curves, so the growth isoboles remain straight lines. Previous work has shown that the 
measured responses to drug pairs can provide clues to underlying network architecture21; our 
results are consistent with these findings, with the effects of different architectures reflected in the 
functional form of Di,eff/Di. 
 
 
IV.  Additional Experimental Examples of Growth Surface Rescaling in Drug-Resistant 
Mutants 
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A.  Scaling Examples in E. faecalis, E. coli, and Human Cancer Cells 
Figure S4 provides additional examples of growth surface rescaling in resistant mutants from E. 
faecalis, E. coli, S. cerevisiae, and human cancer cells.  
 
Given the three functions describing the wild type response to a given drug pair, a mutant's entire 
response surface was predicted based on simultaneous nonlinear least squared fitting of the 
parameters a1, a2, and a3 to growth rate data (Figures 5, S4).  For each mutant, we also computed 
the best fit for a1 and a2 when a3 is set to 1 (that is, when the drug interaction does not change, as 
in 14).  We then compared the 3-parameter model with the 2-parameter model using AIC.  If the 
data did not support the addition of the third parameter (a3) with a weight of at least 0.75, we set 
a3=1 and used the simpler two-parameter model (see, for example, Figure S4C-E for Dap-Linz).  
In total, 34 of the 42 mutants in this work were best described (AIC weight > 0.75) by the three-
parameter model (Figure S4O).  As part of a larger statistical analysis in section V (below) we 
extend this analysis to cases where either a1 or a2 is set to 1, but we find these simplifications are 
not statistically valid to describe any of our experimental mutants. 
 
 
B.  Scaling in Drug with Itself Experiment 
To demonstrate the self-consistency of the model, we also applied our scaling analysis to a classic 
mock experiment where a drug is combined with itself.  Since the interaction of a drug with itself 
should be the same when the drugs are applied to either drug sensitive or drug-resistant cells, the 
interactions derived from the scaling analysis should also remain the same. 
 
Consider, without loss of generality, the case where daptomycin is combined with itself in a mock 
2-drug experiment in both drug sensitive and dapatomycin-resistant cells (Figure S5A-D).  First, 
one should note that solely the single-drug dose response in wild type and mutant cells differ by a 
rescaling of the daptomycin concentration (Figure S5A, B; see also 14 for examples with other 
drugs).  This elementary scaling property has emerged as a general feature of both our scaling 
results and previous work14.     
 
Using this daptomycin response date, we constructed 2-d response surfaces for mock two-drug 
experiments in wild type and Dap-C mutants.  The contours of constant growth in the space of 
drug concentrations are straight lines, which corresponds to Loewe additivity (as expected in a 
drug-with-itself experiment).  Because the single-drug dose response curves are identical up to a 
rescaling of drug concentration, the wild type and mutant growth surfaces are also identical up to 
a rescaling of drug concentration.   
 
Using these response surfaces, we inferred the drug-drug coupling functions for both wild-type 
and mutant cells (Figure S5C-D).  We found that the magnitude of the interaction does not 
change from wild-type to mutant; specifically, the scaling parameter a3=1 in this mock 
experiment.   
 
In any drug with itself experiment, the specific shape of the coupling function will be determined 
by the steepness of the individual dose response curves. However, the steepness of the dose 
response curves does not change following mutation (Figure S5A-B), so the shape of the coupling 
functions will also not change following mutation (Figure S5C-D).    
 
In general, the drug with itself experiment will always correspond to a rescaling where a1 and a2 
are equal—because the increase in resistance is equal for the two identical drugs—and the 
interaction does not change (a3=1).  Therefore, our model reduces to the elementary scaling 
model of Chait et al14, independent of which drug is chosen for the mock combination. Our 
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general scaling model is therefore entirely self-consistent because the interaction scaling 
parameter (a3=1) indicates no new interactions in the mutant. 
 
 
VI.   Statistical Analysis and Null Models 
 
A.  Null Model Based on Random Response Surface Ensemble   
 
To precisely evaluate the statistical significance of our results, we have developed a null model 
that allows us to quantify the probability of observing our scaling results merely by chance.  First, 
we created a random ensemble of smooth and plausible response surfaces from the basis 
functions (g1, g2, and D2eff / D2) that we obtained experimentally. We shuffled these functions to 
create an ensemble of approximately 350 arbitrary drug-response surfaces. Specifically, to create 
each surface in the ensemble, we randomly selected the single drug response parameters Ki and ni 
for each drug from the collection of experimentally-measured parameters from all wild-type cells.  
Then, we randomly choose a single coupling function D2eff / D2 from the set of measured drug-
drug coupling functions from all wild-type cells.  We compute each arbitrary drug-response 
surface using equation 2 (main text) with these three functions (g1 and g2, based on the parameters 
Ki and ni, and the coupling function D2eff / D2) .  Each surface in this random ensemble is a 
smooth two-dimensional surface with properties of a typical drug-response surface (maximum 
growth at the origin, zero growth at high drug concentrations).  However, because the three basis 
functions are randomly selected, the corresponding response surfaces do not correspond to any 
surface initially measured in the study. 
 
We used this ensemble of random drug-response surfaces to quantify the statistical significance 
of our experimental results.  The goal is to measure how well we can scale an experimentally 
measured surface to match any random drug-response surface.  First, we determine the best 
scaling parameters to reproduce the random surfaces using the experimental basis functions from 
wild type (drug sensitive) cells associated with each mutant in the study. This procedure is 
equivalent to considering each random surface as a mutant of an experimentally measured wild 
type drug-response surface.  For example, for comparison with the E. coli mutants in Figure 3A, 
we attempted to scale the same basis functions (those of Cm-Cip in wild type E.coli) to fit each 
surface in the random ensemble.  We then compared the scaling results we observed 
experimentally with those in the random ensemble. 
 
To quantify the goodness-of-fit, we used two statistical quantities.  The first quantity is the 
coefficient of determination, R2, which provides an empirical measure of how well the scaling 
captures the variance in the data.  However, it is possible that a model can provide a high R2 
value but still lead to predictions that deviate systematically from the data.  These deviations will 
manifest themselves as spatial deviations in residuals.  In traditional fits of 1-d functions, there 
are various correlation metrics available to assess the magnitude of theses correlations.  In our 
case, because the response surfaces are two-dimensional, we must account for spatial correlations 
on a 2-d grid.  To do so, we use the Geary C, which is a well-studied quantity and is commonly 
used to measure 2-d spatial correlation (see, for example, 27).  The Geary C, GC, is given by 
 

GC =
(N −1) wij (Xi − Xj )

2

j
∑

i
∑

2W (Xi − X)
2

i
∑

 , 

where N is the total number of observations, wij is a matrix of spatial weights that determines the 
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spatial connection between data points i and j, Xi is the variable of interest (in this case, 
residuals), overbar denotes an average, and W is the sum of all entries of wij.  We take the weight 
matrix to be inversely related to the so-called “city block” distance measure.  This matrix reports 
the distance between points on a grid in terms of total horizontal and vertical deviation.  For 
example, position (1,1) on a 2-d grid is a distance of 1 from positions (1,2) and (2,1), and a 
distance of 2 from position (2,2). 
 
GC ranges from 0 to 2, with GC=1 indicating no spatial correlation, and deviations from 1 
indicating positive or negative correlation.  To convert this number to a “goodness-of-fit” with a 
range similar to R2, we define 

Z =1− 1−GC  
Z ranges from 0 to 1, with 1 indicating no spatial correlation in residuals and 0 indicating strong 
spatial correlation / anti-correlation of residuals.  We take Z as a qualitative measure of goodness 
of fit, similar to R2.  Statistical quantities based on other spatial correlation, such as Morran’s I, 
yield qualitatively similar results, but we choose this one because it is more sensitive to local 
spatial correlations, which seems most appropriate for a goodness-of-fit test of residuals. 
 
We compare goodness-of-fit using R2 or Z using either artificial mutants taken from a random 
ensemble of smooth surfaces or experimentally measured drug-resistant mutant from our study.  
From this procedure, we calculate for each mutant the probability p of observing, for a randomly 
selected surface, a fit equal to or better than what we found experimentally in our mutants.  
Hence, the quantity p is similar to a p value and describes the likelihood of observing our 
experimental scaling results by chance.  Please note that because some basis functions from 
different drug pairs are similar, some surfaces in the ensemble can be similar to those of the 
resistant mutant.  The surfaces in the ensemble also do not include any noise.  Therefore, this p 
value is a conservative estimate because it may overestimate the probability p for fitting a truly 
random surface.   
 
Figure S5E shows the value of p calculated using R2 (closed symbols) or Z (open symbols).  The 
majority of mutants in the study correspond to experimental results that are highly unlikely (p 
<<1) from chance alone.  A small number of mutants correspond to scaling results that, while 
providing good quantitative descriptions of the observed experiments (R2>0.8), are more likely to 
arise purely by chance (p~0.75 when using R2 or Z alone).  In these cases, we can only conclude 
that scaling the wild type basis functions provides an excellent description of the surface; we 
cannot say whether this agreement arises by chance or because our scaling hypothesis is correct.  
Nevertheless, when the data set is taken as a whole, with each mutant considered independent, the 
global p value is extraordinarily small (p<< 10-10).   
 
To further explore the previous points, we quantified each wild type basis set in our study 
according to how readily it can be scaled to fit an arbitrary surface (Figures S5F).  To do so, we 
attempted to scale each basis set to fit all surfaces in the random ensemble.  We then calculated 
the goodness-of-fit using R2 for each surface in the ensemble.  Figure S5F show the cumulative 
distribution functions for R2 from these ensembles.  Each curve corresponds to a single basis set.  
We find that some basis sets are highly "permissive"; that is, they can be scaled to provide a good 
fit to many different surfaces.  For example, the basis set from Dox-Ery in E.coli (light blue 
circles, panel A) can provide fits with high R2 values for many of the surfaces in the ensemble (R2 
> 0.8 for approximately 60% of the surfaces).  This permissivity therefore underlies the high p 
value for the Dox-Ery scaling results in panel S5E.  Interestingly, such highly permissive basis 
sets may prove useful as approximations to generic response surfaces when high degrees of 
accuracy are not required.  By contrast, other basis sets are highly specific to the drug pairs and/or 
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cell lines used and are unlikely to provide a good fit to arbitrary surfaces.   In these cases, such as 
the Cm-Cip basis, the scaling results we observe are highly unlikely to arise by chance.  
Qualitatively similar results are obtained when we use Z instead of R2. 
 
 
B.  AIC-Based Scaling of Mutants to determine Uniqueness of Basis Functions 
 
Table S6:  Scaling Mutants to determine the Uniqueness of Basis Functions 
 

Mutant 
Cm-
Tmp 

Cm-
Cip 

Sal-
Ery 

Sal-
Cm 

Ery-
Linc 

Dox-
Ofl 

kwcmcipseq1 
(cm-cip 1) 0.00 1.00 0.00 0.00 0.00 0.00 

kwcmcipseq2 
(cm-cip 2) 0.00 1.00 0.00 0.00 0.00 0.00 

kwcmcipseq3 
(cm-cip 3) 0.00 1.00 0.00 0.00 0.00 0.00 

kwcmcipseq4 
(cm-cip 4) 0.00 1.00 0.00 0.00 0.00 0.00 
kwcmcip4 
(cm-cip 5) 0.00 1.00 0.00 0.00 0.00 0.00 
kwcmcip5 
(cm-cip 6) 0.00 1.00 0.00 0.00 0.00 0.00 
kwcmcip6 
(cm-cip 7) 0.00 1.00 0.00 0.00 0.00 0.00 
kwcmcip7 
(cm-cip 8) 0.00 1.00 0.00 0.00 0.00 0.00 
kwcmcip8 
(cm-cip 9) 0.00 1.00 0.00 0.00 0.00 0.00 
kwcmcip9 

(cm-cip 10) 0.00 1.00 0.00 0.00 0.00 0.00 
kwcmcip10 
(cm-cip 11) 0.31 0.01 0.59 0.00 0.10 0.00 
kwcmcip11 
(cm-cip 12) 0.00 1.00 0.00 0.00 0.00 0.00 
kwcmcip12 
(cm-cip 13) 0.00 1.00 0.00 0.00 0.00 0.00 
kwcmcip13 
(cm-cip 14) 0.00 0.29 0.00 0.00 0.00 0.71 
kwcmcip14 
(cm-cip 15) 0.00 0.11 0.00 0.00 0.00 0.89 
kwcmcip15 
(cm-cip 16) 0.00 0.87 0.00 0.00 0.00 0.13 

kwcmcipseq5 
(cm-cip 17) 0.00 1.00 0.00 0.00 0.00 0.00 

kwcmcipseq6 
(cm-cip 18) 0.00 1.00 0.00 0.00 0.00 0.00 

 
Table S6:  The table provides Akaike weights for models of the two-drug response of E. coli 
mutants (Table S3).  For each mutant, the two-drug response was measured for the combination 



 
 19 

of Cm-Cip.  The WT basis functions from six representative drug pairs (including Cm-Cip) were 
then rescaled using scaling parameters ai  to provide the best fit for the mutant response.  For all 
18 mutants, the Akaike weight for the “true” basis functions (those associated with the drug pair 
Cm-Cip) was nonzero (> 0.01).  For 15 of the 18 mutants, the WT basis corresponding to Cm-Cip 
was associated with a high Akaike weight (>0.87), indicating that the basis functions from other 
drug pairs do not provide an equally valid model for the data.  In 2 of the remaining mutants, 
there is some evidence (nonzero Akaike weight) that WT basis functions for Dox-Ofl, a 
mechanistically similar drug pair, could provide the best model for the data; this is not 
surprising, since the toxicity functions and coupling functions for this drug pair are qualitatively 
similar to those for Cm-Cip.  In the final case (kwcmcip10), the Cm-Cip basis has non-zero 
weight, but other drug pairs with similar, though not identical, basis functions provide the best 
model.  This data demonstrates that all sets of basis functions are not equally valid models and 
the basis functions cannot be used interchangeably to describe an arbitrary response surface. 
 
 
C.  Comparison with Interpolation 
Our scaling results allow us to estimate the full dose response surface of a drug-resistant mutant 
using only a small number of data points.  To determine the improvement scaling provides over 
conventional fitting techniques, we compared the results of our scaling model to a standard 
numerical interpolation (Figure S5G-J).  For four representative organisms, we estimated the full 
response surface using 4 data points and either 1) scaling or 2) numerical interpolation.  For the 
latter, we assumed that growth = 1 at the origin and growth=0 at high drug concentrations 
corresponding to (D1,D2)=1.5*(D1,max, D2,max), (D1,D2)=1.5*(D1,max, 0), (D1,D2)=1.5*(0, D2,max), 
where D1,max (D2,max) is the highest concentration of drug 1 (2) used in the experiment.  Note that 
these limits high and low growth limits are naturally satisfied in the scaling model.   
 
To estimate the growth surface, we chose the following 4 data points on each surface: 
(D1,D2)=(1/2)*(0, D2,max), (D1,D2)=(1/2)*(D1,max,0), (D1,D2)=(1/2)*( D1,max, D2,max), and finally, the 
data point corresponding to the second highest concentration of each drug.  We therefore have 
one data point from the single drug dose response curves and two data points with nonzero 
concentrations of both drugs that falls roughly on the diagonal through the space of drugs.  
Interpolation is performed using interpolation implemented with Matlab’s griddata function (v4 
algorithm), which estimates the 2-d surface from samples that need not be evenly spaced on the 
spatial grid.  The interpolation is required to match the data at the sampled points. 
 
Figure S5G-J shows that the scaling method always performs as well or better than the 
interpolation when there are a small number of data points.  In most cases, interpolation requires 
approximately an order of magnitude more data points to achieve fits of similar quality (Figure 
S5H-J).  However, in one case (Figure S5G), the interpolation provides a good approximation 
with roughly the same number of data points. We note that the scaling method typically 
outperforms interpolation when data points are randomly chosen, and as expected, the 
interpolation performs much worse when points are more clustered in the space.  Histograms in 
figure 5 (main text) show the distribution of fit qualities with the scaling method for randomly 
sampled data points.  

 
 
D.  Sequential Fitting of Scaling Parameters 
In addition to simultaneously fitting a1, a2, and a3 for each mutant, we repeated the scaling 
analysis by first fitting the parameters a1, a2 using single drug response data and then fitting a3 
using only the two drug response data. The fit quality is only very slightly reduced using this 
approach, providing evidence that the simultaneous fit of all 3 parameters does not suffer from 
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overfitting (see Figure S5K).  The right panels in figure S5K show the two examples from the 
main panel where R2 is most dramatically reduced by using sequential fitting; even in these cases, 
the change in fit quality is modest (change in R2 is less than 0.09). 
 
In addition, we tested whether all 3 parameters are statistically justified for each mutant.  
Specifically, for each mutant we attempted to scale the wild type basis functions in four ways: 
 

1. By using all 3 scaling parameters (a1, a2, a3) 
2. By using only (a1, a2) (drug interaction does not change) 
3. By using only (a1, a3) (resistance to drug 2 does not change) 
4. By using only (a2, a3) (resistance to drug 1 does not change) 

 
We then compared the four cases (1-4) using standard AIC-based model selection techniques. We 
found that there are a small number of cases where scaling 2 provides the best model (see Table 
S7).  By contrast, we found no examples where scaling 3 or 4 provide the best model.  There are, 
indeed, cases where models 3 and 4 are good models by empirical measures (R2 > 0.9 for the (a1, 
a3) fit in E coli k01.48 Cm-Cip 1, for example).  However, models 3 and 4 are never chosen to be 
the AIC superior model from the set. 
 

Table S7:  AIC Weights for 3-parameter and 2-parameter scalings 
  

 
Parameters to Fit 

 Mutant (a1,a2,a3) (a1,a2) (a1,a3) (a2,a3) 
E.coli k01.48 Cm-Cip 1 1.00 0.00 0.00 0.00 
E. coli k01.48 Cm-Cip 2 1.00 0.00 0.00 0.00 

E. coli BW25113 Cm-Cip 1 1.00 0.00 0.00 0.00 
E. coli BW25113 Cm-Cip 2 1.00 0.00 0.00 0.00 
E. coli BW25113 Cm-Cip 3 1.00 0.00 0.00 0.00 
E. coli BW25113 Cm-Cip 4 1.00 0.00 0.00 0.00 
E. coli BW25113 Cm-Cip 5 0.96 0.04 0.00 0.00 
E. coli BW25113 Cm-Cip 6 0.90 0.10 0.00 0.00 
E. coli BW25113 Cm-Cip 7 0.93 0.07 0.00 0.00 
E. coli BW25113 Cm-Cip 8 0.84 0.16 0.00 0.00 
E. coli BW25113 Cm-Cip 9 1.00 0.00 0.00 0.00 
E. coli BW25113 Cm-Cip 

10 1.00 0.00 0.00 0.00 
E. coli BW25113 Cm-Cip 

11 0.54 0.46 0.00 0.00 
E. coli BW25113 Cm-Cip 

12 1.00 0.00 0.00 0.00 
E. coli BW25113 Cm-Cip 

13 0.82 0.18 0.00 0.00 
E. coli BW25113 Cm-Cip 

14 1.00 0.00 0.00 0.00 
E. coli BW25113 Cm-Cip 

15 1.00 0.00 0.00 0.00 
E. coli BW25113 Cm-Cip 

16 1.00 0.00 0.00 0.00 
E. coli BW25113 Cm-Cip 

17 0.89 0.11 0.00 0.00 
E. coli BW25113 Cm-Cip 1.00 0.00 0.00 0.00 
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18 
E. faecalis DapA Amp-Dap 0.93 0.07 0.00 0.00 
E. faecalis DapB Amp-Dap 0.22 0.78 0.00 0.00 
E. faecalis DapC Amp-Dap 1.00 0.00 0.00 0.00 
E. faecalis DapA Linz-Dap 0.33 0.67 0.00 0.00 
E. faecalis DapB Linz-Dap 0.75 0.25 0.00 0.00 
E. faecalis DapC Linz-Dap 0.39 0.61 0.00 0.00 

S. aureus Newman Cm-Nor 
1 0.44 0.56 0.00 0.00 

S. aureus Newman Cm-Nor 
2 0.43 0.57 0.00 0.00 

E. coli BW25113 Sal-Cm 1 1.00 0.00 0.00 0.00 
E. coli BW25113 Sal-Cm 2 1.00 0.00 0.00 0.00 
E. coli BW25113 Sal-Cm 3 1.00 0.00 0.00 0.00 
E. coli BW25113 Sal-Cm 4 1.00 0.00 0.00 0.00 
E. coli BW25113 Dox-Ery 1 0.97 0.03 0.00 0.00 
E. coli BW25113 Dox-Ery 2 1.00 0.00 0.00 0.00 
E. coli BW25113 Dox-Ery 3 0.33 0.67 0.00 0.00 
Melanoma PLX – Dacarb 0.30 0.70 0.00 0.00 

NSCLC 17AAG-Gef 1.00 0.00 0.00 0.00 
NSCLC Gef-Pac 1.00 0.00 0.00 0.00 

 
Table S7:  AIC weights in favor of scaling models with all 3 parameters (1st column) and with 
only two parameters (columns 2-4) for each mutant.    
  
 
 
VII.  Supplemental Figures and Figure Captions 
 
Figure S1:  Resistance events can alter Bliss- or Loewe-based interactions between drugs in 
prokaryotic and eukaryotic cells 
Similar to Figure 1, heat maps quantify the drug interaction and classify it as synergistic or 
antagonistic across a range of active concentrations for both wild type and mutant cells. Full 
growth surfaces are shown below each plot. To quantify the drug interaction at each point on the 
response surface, we use the interaction parameter I based on Loewe additivity, which is positive 
(blue) for antagonistic, negative (red) for synergistic interactions, and 0 when there is no 
interaction (Loewe additivity).  In addition to modifying the resistance of cells to one or more 
drugs, resistance events can also modify the interactions between drug pairs.  A.  Gefitinib 
resistance in non-small cell lung cancer (NSCLC).  B.  Chloramphenicol resistance in E. coli.  C.  
Chloramphenicol and ciprofloxacin resistance in E. coli.  D.  Daptomycin resistance in E. 
faecalis.  E.  Erythromycin and doxycycline resistance in E. coli. F. Norfloxacin resistance in S. 
aureus.   
 
 
Figure S2: Comparison with other response surface models and application to well-studied 
systems and network models. 
 A.  The model from Equation 1 (blue) with AIC-best drug-drug coupling function is compared to 
the classic response surface model13 (red) for different drug pairs.  In the response surface model, 
which is based on Loewe additivity, the single drug responses are Hill-like functions and the 
coupling between drugs is captured by a single additive term with an interaction parameter 
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typically denoted by α (see Equation 5 in reference 13).  For both our model (Equation 1) and the 
response surface model, the parameters of the single drug dose-response surfaces are fit first, 
followed by an estimate of the interaction parameter(s).  In some cases (e.g. dox-ery, row 4, 
column 2), both models provide excellent descriptions of the data, though in other cases (e.g. cm-
ofl, row 1, column 2), Equation 1 outperforms the response surface model.  In each case, 
Equation 1 provides a better statistical model of the data according to model selection (Table 
S5).  Drug combinations are, from left to right in each row, Cm-Tmp, Cm-Ofl, Cm-Cip, Tmp-Ofl 
(row 1); Sal-Ofl, Sal-Linc, Sal-Ery, Sal-Dox (row 2); Sal-Cm, Linc-Ofl, Tmp-Ery, Linc-Ery (row 
3); Dox-Linc, Dox-Ery, Ery-Cm, Dox-Cm (row 4); Dox-Tmp, Dox-Ofl, Cm-Linc, Sal-Cip (row 4).   
 
B.  The function C(D1) (blue line) is proportional to mar activity (red squares) when D1 is 
salicylate and D2 is tetracycline.  Mar promoter activity (relative to untreated wild type cells) was 
measured in E. coli Frag-1B strain with PZS*2 MAR-YFP plasmid17.  Promoter activity was 
determined by first correcting raw YFP fluorescence to account for changing background 
fluorescence as cells grow. Mar promoter activity was taken to be the background-corrected 
fluorescence concentration (fluorescence/absorbance), averaged over steady state, times the 
growth rate k.   
 
C.  Two examples of approximately symmetric drug interactions (Loewe additive). 
 
D.  Drug-drug coupling functions are shown for drug pairs targeting two reactions in the toy 
biochemical network (upper right, 20).  For parameter values and simulation details, see 20. For 
each coupling function, the presence of drug i alters the effective concentration of drug j.  Green 
curves: drug associated to a given row is drug i.  Blue curves:  drug associated with a given 
column is drug i; red curve:  either drug (from row or column) can be chosen as drug i.  For 
example, in row 4, column two, the curve is blue, which indicates that the presence of drug 2 
increases the effective concentration of drug 4.  
 
E.  Non-monotonic coupling functions can arise when there is negative feedback, but the specific 
form depends on the specific architecture of the feedback loop.  Top, model from 20 (see Figure 
S15, S16).  Bottom, negative feedback model from Figure 5 in 12. 
 
Figure S3:  Example Growth Curves and Isobole Rescaling 
A.  Absorbance time series for a representative E. coli mutant, resistant to both ciprofloxacin and 
chloramphenicol, exposed to various concentrations of both drugs (see Figure 3).  Green lines: 
exponential fits whose slopes are the estimated growth rates.  Drug concentration increases 
linearly along each axis.   
 
B.  Full heat map of relative growth rates corresponding to the growth curves in A.   
 
C.  Contours of constant growth (isoboles) for S. aureus in drug sensitive (wild type) and drug 
resistant cells exposed to chloramphenicol and norfloxacin can be collapsed onto one another by 
a simple rescaling of the two drug concentrations, indicating that the morphology of the response 
surface, and the drug interaction, is the same in both strains (top panels).  Similar results have 
been shown for other drug pairs in E. coli16.  By contrast, growth isoboles for drug sensitive non-
small cell lung cancer (NSCLC) cells (bottom panels) exposed to Gefitinib and 17-AAG have 
different curvatures (left) and cannot be collapsed onto one curve by a simple rescaling of drug 
concentrations (right).  Instead, the drugs interact suppressively in the wild type and 
synergistically in the mutant. 
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Figure S4:  Rescaled wild type basis functions describe resistant mutants from multiple 
organisms 
Basis functions extracted from the responses of drug sensitive cells can be rescaled to describe 
the response of drug resistant mutants to the same drug pairs.  Scaling parameters (a1, a2, a3) and 
R2 values are given below.  
 
Panels A-E, daptomycin-resistant mutants (Dap A, Dap B, Dap C)9 exposed to daptomycin and 
either ampicillin or linezolid.  For amp-dap combinations, a1 is associated with daptomycin and 
a2 with ampicillin.  For dap-linez combinations, a1 is associated with linezolid and a2 with 
daptomycin..  A.  (a1, a2, a3)=(0.0078±0.0004, 1.40±0.02, 0.70±0.06); R2=0.93.  B. (a1, a2, 
a3)=(0.015±0.0007, 2.26±0.04, 0.88±0.03); R2=0.96.   In both DapA and DapB mutants, the cell 
are strongly resistant to daptomycin (a1<<1), slightly sensitized to ampicillin (a2>1), and the 
synergy between drugs has decreased (a3<1).  C.  (a1, a2)=(1.27±0.03, 0.0032±0.0004); R2=0.95; 
Additional parameter a3 not supported by data (see description of model selection, above).  D.  
(a1,a2)=(0.82±0.03, 0.012±0.0007); R2=0.90; Additional parameter a3 not required (see 
description of model selection, above).  E.  (a1, a2)=(0.73±0.01, 0.002±0.0001); R2=0.96; 
Additional parameter a3 not required.  DapA mutants show slightly dereased resistance to 
linezolid (a1>1), while DapB and DapC mutants show slightly increased resistance to linezolid 
(a1<1).   
 
Panels F-K, Fluoroquinolone-resistant E. coli exposed to chloramphenicol-ciprofloxacin (F-G), 
mutant BW25113 E. coli strains exposed to salicylate-chloramphenicol (H-I) and to doxycycline-
erythromycin (J-K).  Mutants in F-G are fluoroquinolone-resistant clinical isolates7, mutants in 
H-I are mutants kwcmcip1 and kwcmcip2 (Table S3), and mutants in J-K were selected by 
growing BW25113 cells for 60 generation in [Dox]=0.3 and [Ery]=15 ug/mL (J) or [Dox]=0.15 
and [Ery]=30 ug/mL (K). Scaling parameters (a1, a2, a3) and R2 values are:  F.  (a1, a2, 
a3)=(1.09±0.01, 0.05±0.0004, 0.61±0.03); R2=0.98.  G. (a1, a2, a3)=(1.14±0.02, 0.10±0.0009, 
0.49±0.04); R2=0.968.   H. (a1, a2, a3)=(0.98±0.01, 0.23±0.005, 0.003±0.02); R2=0.99.  I. (a1, a2, 
a3)=(0.98±0.02, 0.25±0.005, -0.11±0.02); R2=0.98. J. (a1, a2, a3)=(0.15±0.009, 0.17±0.007, 
1.92±0.09); R2=0.87. K. (a1, a2, a3)=(0.22±0.009, 0.25±0.009, 1.63±0.06); R2=0.93.   In F-G, 
resistance to chloramphenicol is unchanged (a1 ~ 1) but antagonism between the drugs has 
decreased (a3<1).   In H-I, resistance to chloramphenicol is increased (a2 < 1) and the 
antagonism has dramatically decreased (a3 ~ 0).  In J-K, resistance to both drugs has increased 
and the synergy between drugs has increased (a3>1).   
 
Panel L, cycloheximide-resistant S. cerevisiae exposed to cycloheximide and 5-fluoroscytosine; 
(a1, a2, a3) = (0.9±0.05, 0.0043±0.0002, -0.22±0.02). 
 
Panels M-N, PLX4720-resistant A375 melanoma cells exposed to PLX-Dacarb and Gefitinib-
resistant GR6 cells exposed to gefitinib-paclitaxel.  M.  (a1, a2)=(2.02±0.14, 0.06±0.004); 
R2=0.91; parameter a3 not needed (see section on model selection methods). We found that 
PLX4720, an inhibitor of the oncogene B-RAF which was recently shown to elicit dramatic 
clinical responses followed by the emergence of therapeutic resistance26 and dacarbazine, a 
standard-of-care alkylating agent, act antagonistically on A375 melanoma cells. To explore 
effects of resistance on the two-drug response surface, we engineered PLX4720-resistant A375 
cells by stably overexpressing the kinase C-RAF, which can confer resistance to PLX4720 by 
overriding B-RAF dependence.3 In these resistant cells, the resistance to dacarbazine has 
decreased (a1>1), the resistance to PLX4720 has increased dramatically (a2 << 1), and the 
coupling between drugs has slightly decreased, but not in a statistically significant way.  
Interestingly, in this case, one can describe the mutant isoboles by a simple rescaling of the wild-
type contours, indicating that the drug interaction does not change in a significant way in the 
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mutant.  N. (a1, a2, a3)=(1.26±0.03, 0.01±0.0009, 4.68±0.6); R2=0.8. Gefitinib-resistant (GR6) 
cells show slightly increased sensitivity to paclitaxel (a1>1), increased resistance to gefitinib (a2 
<< 1), and a strong increase in the antagonism between the drugs (a3>1).  See SI Section I for 
estimation of experimental error bars. 
 
Panel O, the scaling parameter a3 is greater than 1 when the magnitude of the drug interaction 
has increased in the mutant, less than 1 but greater than 0 when the magnitude of the drug 
interaction has decreased in the mutant, and less than 0 when the interaction has changed from 
synergistic to antagonistic or vice versa.  Circles:  E coli (blue, k01.48 mutants exposed to Cm-
Cip; red, BW25113 mutants exposed to Cm-Cip; black, BW25113 mutants exposed to Sal-Cm; 
light blue, BW25113 mutants exposed to Dox-Ery).  Squares:  E. faecalis (blue, V583 mutants 
exposed to Linez-Dap; red, V583 mutants exposed to Dap-Amp).  Upper triangles:  S. aureus 
(blue, nor-R mutants exposed to Cm-Nor; red, nor-R mutants exposed to Cm-Cip  Right triangles, 
cancer cells (blue:  melanoma exposed to PLX-Dacarb; red:  lung cancer exposed to Gef-17-
AAG; black, lung cancer exposed to Gef-Pac). 
 

 
 
Figure S5:  Statistical controls:  drug with itself, null model, comparison with interpolation, 
sequential fitting of parameters 
 
A.  Single drug dose-response functions for daptomycin in drug sensitive and drug resistant 
mutants.   
 
B.  Dose-response functions in panel A rescaled by the MIC, defined as the concentration at 
which the inhibition is 50%.  Solid curve, Hill-like function with n=1.15, K=1. Response surfaces 
for drug-with-itself experiments are generated as Loewe additive combinations of two drugs 
(both daptomycin) characterized by single drug dose-response functions with parameters K, n 
estimated from data (panel A).   
 
C.  Drug-drug coupling function for wild-type (black) and Dap-C (cyan) response surfaces.   
 
D.  Drug-drug coupling functions following rescaling of daptomycin concentration by MIC.  No 
scaling of the interaction magnitude is required (a3=1).     
 
E.  Probability p of observing a fit equal to or better than experiment in a random ensemble of 
surfaces.  Fits are quantified using coefficient of determination, R2(closed symbols) or Z (open 
symbols).  Each point represents a single mutant.  Circles:  E coli (blue, k01.48 mutants exposed 
to Cm-Cip; red, BW25113 mutants exposed to Cm-Cip; black, BW25113 mutants exposed to Sal-
Cm; light blue, BW25113 mutants exposed to Dox-Ery).  Squares:  E. faecalis (blue, V583 
mutants exposed to Linez-Dap; red, V583 mutants exposed to Dap-Amp).  Upper triangles:  S. 
aureus (blue, nor-R mutants exposed to Cm-Nor; red, nor-R mutants exposed to Cm-Cip). Right 
triangles, cancer cells (blue:  melanoma exposed to PLX-Dacarb; red:  non small cell lung 
cancer exposed to Gef-17-AAG; black, lung cancer exposed to Gef-Pac; light blue, cancer stem 
cells exposed to etoposide and PLX4720).  Inset, histogram of all mutants for the R2 measure.    
 
F.  Cumulative distribution functions of R2 for each wild type basis set used in the study.  Markers 
are the same as in panel E.  For comparison, the open blue circles represent the cumulative 
distribution function (CDF) of R2 for our entire experimental data set.   
 
G-J.  Comparison of scaling method (stars) and interpolation (circles or squares) using 
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coefficient of determination (R2, red) and root mean squared error (RMSE, blue) to quantify 
goodness of fit.  Scaling is performed using exactly four data points, as described in Section V.  
Interpolation is performed using the same four data points in addition to N randomly chosen data 
points.  N ranges from 0 to 76.  R2 and RMSE are means over 50 independent trials, with each 
trial corresponding to a particular choice of N additional data points used for interpolation.  
Error bars are +/- standard error of the mean. 
 
K.  Main panel:  R2 from scaling that fits (a1, a2, a3) simultaneously (solid symbols) and from 
scaling that first fits (a1, a2) and then fits a3.  Each point represents a single mutant.  Circles:  E 
coli (blue, k01.48 mutants exposed to Cm-Cip; red, BW25113 mutants exposed to Cm-Cip; black, 
BW25113 mutants exposed to Sal-Cm; light blue, BW25113 mutants exposed to Dox-Ery).  
Squares:  E. faecalis (blue, V583 mutants exposed to Linez-Dap; red, V583 mutants exposed to 
Dap-Amp).  Upper triangles:  S. aureus (blue, nor-R mutants exposed to Cm-Nor; red, nor-R 
mutants exposed to Cm-Cip). Right triangles, cancer cells (blue:  melanoma exposed to PLX-
Dacarb; red:  non small cell lung cancer exposed to Gef-17-AAG; black, lung cancer exposed to 
Gef-Pac; Right panels, examples where R2 is most decreased by sequential fits (E. coli with Dox-
Ery, top; lung cancer with Gef-Pac, bottom).    
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