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SUMMARY

Drug resistance in bacterial infections and cancers
constitutes a major threat to human health. Treat-
ments often include several interacting drugs, but
even potent therapies can become ineffective in
resistant mutants. Here, we simplify the picture of
drug resistance by identifying scaling laws that unify
themultidrug responses of drug-sensitive and -resis-
tant cells. On the basis of these scaling relationships,
we are able to infer the two-drug response of resis-
tant mutants in previously unsampled regions of
dosage space in clinically relevant microbes such
as E. coli, E. faecalis, S. aureus, and S. cerevisiae
as well as human non-small-cell lung cancer, mela-
noma, and breast cancer stem cells. Importantly,
we find that scaling relations also apply across evolu-
tionarily close strains. Finally, scaling allows one to
rapidly identify new drug combinations and predict
potent dosage regimes for targeting resistant
mutants without any prior mechanistic knowledge
about the specific resistance mechanism.
INTRODUCTION

Treatment strategies for infectious diseases and cancers often

involve multiple drugs that must be combined, adapted, and

refined to target evolving cell populations. Multidrug therapies

can be difficult to design because drugs often interact, making

their combined effects larger or smaller than expected from their

individual effects (Bliss, 1956; Fitzgerald et al., 2006; Greco et al.,

1995; Keith et al., 2005; Lehár et al., 2008; Loewe, 1953). Further-

more, well-developed multidrug treatments can be thwarted by

the emergence of multidrug resistance, which arises in both

bacterial infections and cancer, and represents a growing public

health threat (Levy and Marshall, 2004). For example, potent

drug regimens designed to target a particular cancer may be

rendered ineffective by the rapid evolution of drug resistance
(Garrett and Arteaga, 2011; Glickman and Sawyers, 2012;

Poulikakos and Rosen, 2011). In addition, drugs may interact

differently in each new resistant mutant, making the molecular

characterization of resistance a time-consuming and at times

untenable goal. Because of the rapidly increasing number of

multidrug-resistant mutants, there is a significant need for new

strategies to characterize and refine drug regimens in hopes of

mitigating the effects of resistance.

Scaling laws can offer a complementary approach for simpli-

fying the picture of multidrug-resistance without relying on highly

time- and resource-consuming molecular studies. These laws,

which can be surprisingly simple, are often based on symmetry

arguments rather than system-specific microscopic details.

Scaling is powerful because it offers a quantitative unifying

framework for systems that appear, on the surface, to be very

different. For example, allometric scaling laws (Shoval et al.,

2012) connect anatomical and physiological features, such as

body mass and metabolism, across a wide range of organisms.

Similar relations have contributed to our understanding of

phenotypic variability in populations of bacteria (Balaban et al.,

2004) and eukaryotic immune cells (Feinerman et al., 2008), the

fluctuation-response relationship in bacterial chemotaxis (Park

et al., 2010), the structural properties of metabolic networks

(Jeong et al., 2000), growth and gene expression in populations

of Escherichia coli (Scott et al., 2010), and epistatic interactions

between genes in yeast (Velenich and Gore, 2013). Motivated by

the success of scaling laws across disciplines, we set out to

identify similar principles that could unify the description of

drug interactions in sensitive and resistant cells. The discovery

of such scaling relations could provide an approach for system-

atically adaptingmultidrug treatments to effectively combat drug

resistance, even before the molecular mechanisms have been

fully elucidated.
RESULTS

Drug Interactions Can Change following Acquisition
of Resistance
We first asked how acquired drug resistance affects the inter-

actions between two drugs observed initially in wild-type (WT)
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Figure 1. Resistance that Either Alters or Conserves Interactions between Drugs in Prokaryotic and Eukaryotic Cells
Heatmaps quantify the drug interaction and classify it as synergistic or antagonistic across a range of active concentrations for both WT and mutant cells. To

quantify the drug interaction at each point on the response surface, we define the interaction parameter I = log2(g12 � g1 g2 + 1), which is positive (blue) for

antagonistic, negative (red) for synergistic interactions (Bollenbach and Kishony, 2011), and zero when there is no interaction (g12 = g1 g2, consistent with Bliss

independence). In addition to modifying the resistance of cells to one or more drugs, resistance events can sometimes modify the interactions between drug

pairs. See Figure S1 for an alternative quantification of drug interactions. We note that because themutants in this study are resistant to at least one drug, wemust

use higher drug concentrations for the mutant cells to obtain growth reduction. However, we estimated the drug interactions over concentration ranges that yield

approximately similar growth reductions in mutant and WT cells (Figure S1). Drug concentrations are given in units of mg/ml unless otherwise noted.

(A) Gefitinib (Gef) resistance in NSCLC cells changes the interaction between 17-AAG and gefitinib from strongly antagonistic (suppressive) to synergistic.

[17-AAG] and [gefitinib] are in units of nM and mM, respectively.

(B) Chloramphenicol (Cm) resistance inE. coli changes the interaction between salicylate (Sal) andCm from strongly antagonistic (suppressive) to additive/weakly

synergistic.

(C) Cm and ciprofloxacin (Cip) resistance in E. coli weakens the strongly antagonistic (suppressive) interaction between Cm and Cip, but does not eliminate the

antagonism. [Cip] is in units of ng/ml.

(D) Daptomycin (Dap) resistance in E. faecalis reduces the strongly synergistic interaction between ampicillin and Dap.

(E) Erythromycin (Ery) and doxycycline (Dox) resistance in E. coli increases the synergistic interaction between the two drugs.

(F) Norfloxacin (Nor) resistance in S. aureus does not change the interaction between Cm and Nor.
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drug-sensitive cells. To answer this question, we measured the

population growth of a wide range of organisms, including bac-

teria and human cancer cells, in response to drug pairs (Supple-

mental Experimental Procedures; Tables S1–S3). We then

quantified the nature of the drug interaction, i.e., synergy or

antagonism, in both WT and resistant cells using two standard

pharmacology approaches (Figures 1 and S1). Interestingly, we

find that resistance can alter not only the individual drug
2 Cell Reports 6, 1–12, March 27, 2014 ª2014 The Authors
efficacies but also the interactions between drugs. That is, two

drugs can interact quite differently depending on whether they

are applied to drug-resistant mutants or drug-sensitive cells (Fig-

ures 1 and S1). For example, the combination of two anticancer

agents, gefitinib and 17-AAG, is antagonistic for most dosages in

EGFR mutant non-small-cell lung cancer (NSCLC) cells, making

it an unlikely a priori choice for therapy (Figure 1A). However, the

same drug pair becomes synergistic for most dosages (Xu et al.,
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2012) in a gefitinib-resistant mutant (Engelman et al., 2007; Fig-

ure 1A). On the other hand, in E. coli, the antagonism between

some drug pairs is eliminated (Figure 1B) or reduced (Figure 1C)

in antibiotic-resistant mutants, but the interactions do not

become synergistic. A similar decrease in the interactions

between antibiotics occurs in vancomycin-resistant Entero-

coccus faecalis (Palmer et al., 2011), where the synergy (Rand

and Houck, 2004) in the combination of daptomycin and ampi-

cillin is reduced in certain daptomycin-resistant mutants (Fig-

ure 1D). By contrast, in E. coli exposed to the weakly synergistic

combination of doxycycline (Dox) and erythromycin (Ery), the

drug pair becomes increasingly synergistic in some multidrug-

resistant mutants (Figure 1E). We also observe cases in which

the drug interactions are not changed by resistance events.

For example, the antibiotics chloramphenicol (Cm) and norfloxa-

cin (Nor) show approximately the same level of antagonism in

Staphylococcus aureus cells and Nor-resistant mutants. In this

case, the mutation reduces the effective concentration at which

Nor becomes toxic, but otherwise does not modify the shape of

the cell’s two-drug response surface. Similar results have been

reported for some mutations in E. coli (Chait et al., 2007). In

summary, we find that resistance can alter drug interactions in

multiple different ways, and there is no obvious relationship

between the interactions observed in sensitive cells and those

in resistant mutants.

ASimpleModel CanDescribe aWideRange of Two-Drug
Response Surfaces
To establish a relationship between drug interactions before

and after the acquisition of resistance, we constructed a sim-

ple model to quantitatively characterize growth response

surfaces after exposure to two drugs (separately or in combi-

nation). Response surfaces are commonly used to quantify

and classify the interactions between two drugs based

on measurements of cell proliferation (Fitzgerald et al., 2006;

Greco et al., 1995; Lehár et al., 2007, 2008). However, most

models apply to only a subset of all measured response sur-

faces because they are based on simplified enzyme kinetics

or are specific to particular drug classes and particular intra-

cellular pathways (Fitzgerald et al., 2006; Greco et al., 1995;

Lehár et al., 2007, 2008). To account for different types of

response surfaces, we used a model of the following multipli-

cative form:

g1;2 = g1ðD1Þg2ðD2effÞ (Equation 1)

where g1,2 is the growth in the presence of drugs 1 and 2

together, g1 is the growth as a function of drug 1 alone, and g2
is the growth as a function of drug 2 alone. D1 is the concentra-

tion of drug 1, and D2eff is the effective concentration of drug 2,

which accounts for interactions between the drugs. Changing

the concentration D2 into D2eff formally captures the interaction

between the two drugs by allowing the presence of one drug

(D1) to modify the effective concentration and hence the toxicity

of the other drug (D2) according to

D2eff =D2ð1+CðD1ÞÞ-1; (Equation 2)
Note that D2eff is equal to the concentration D2 modified by a

factor (1 + C(D1))
�1 that depends only on D1. This dependence

is governed by the function C(D1), which we call the two-drug

toxicity function (see Supplemental Results). The specific defini-

tion of this factor is empirical and was chosen by analogy to

simple efflux-mediated drug interactions (Wood and Cluzel,

2012). The function C(D1) will prove essential for establishing

scaling relationships between WT and mutant cells. Importantly,

Equations 1 and 2 allow us to decompose two-drug response

surfaces into three simpler, one-dimensional ‘‘basis functions’’:

g1(D1), g2(D2), and C(D1).

We first verified that this model is sufficiently general to

describe, with a minimal number of parameters, all experimen-

tally observed response surfaces. Figure 2A shows a typical

example of a response surface, in this case for E. coli, in the

presence of the antibiotics Cm and ciprofloxacin (Cip) (for exper-

imental details, see Supplemental Experimental Procedures).

Strongly antagonistic behavior between these drug classes

has been linked with a suboptimal ratio of protein to DNA in

the cell (Bollenbach et al., 2009). Using the measured two-

dimensional response surface, we first extracted the one-drug

toxicity functions (g1 and g2) and then determined the two-drug

toxicity function C(D1) empirically from the data. Specifically,

we fit the response surface data using the two latter equations

and an empirical parameterization for C(D1). We selected the

best parameterization of C(D1) among a set of 11 possibilities

using Akaike Information Criteria, a robust model selection

technique (Supplemental Results). Together with Equation 1,

these three functions (g1, g2, and C(D1)) determine the bacterial

growth response surface for any concentration of the two drugs

(Figure 2, right).

The model provides a similarly good description for all of the

19 additional drug pairs tested (Supplemental Results; Table

S5), spanning a wide range of response surfaces and yielding

C(D1) functions with many different shapes (Figure 2B). In

some mechanistically tractable cases, the two-drug toxicity

function is constrained by the intracellular molecular pathways

underlying the single-drug and multidrug responses (Supple-

mental Results; Figure S2). For example, in themultiple antibiotic

resistance (MAR) system, C(D1) is proportional to the activity of

the mar promoter (Figure S2B; Wood and Cluzel, 2012). More

generally, the model decomposes two-dimensional response

surfaces into three simpler, empirical functions that do not

require a detailed molecular understanding of the drug interac-

tion or mode of action.

The Decomposition of Response Surfaces into Basis
Functions Reveals Scaling Relationships between
Drug-Sensitive and -Resistant Cells
Next, we exploited the decomposition of response surfaces

into basis functions to search for mathematical relationships

between the multidrug responses of drug-sensitive and -resis-

tant cells. We hypothesized that certain properties of the basis

functions should be conserved when bacteria become drug

resistant. Specifically, we postulated that the effect of resis-

tance could be to (1) rescale the concentration of each drug,

with the scaling factors a1 or a2 being specific to each mutant,

and/or (2) change the interaction between drugs by rescaling
Cell Reports 6, 1–12, March 27, 2014 ª2014 The Authors 3
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Figure 2. Characterization of Bacterial Response to a Pair of Drugs with a Set of Three Unique Basis Functions

(A) Experimental heatmap of growth rate relative to that of untreated cells in response to a pair of drugs (Cm and Cip, left). Red is maximum growth, blue is no

growth. See Supplemental Experimental Procedures for an estimate of uncertainty in growth rate. [Cm] and [Cip] are in units of mg/ml and ng/ml, respectively.

Drug 1 (Cm, middle top), drug 2 (Cip, middle center), and two-drug toxicity functions (C(D1), middle bottom) are shown. The one-drug toxicity functions are

modeled using the Hill form, which is commonly used in pharmacology, where Ki is the concentration of drug i (for i = 1,2) at which the effect is half-maximal (also

known as the IC50), and ni is the Hill coefficient describing the slope of the response. The function C(D1) is an empirically determined function that captures the

effect of drug 1 (Cm) on drug 2 (Cip) (Equation 2). It is fit directly from data and has the following intuitive interpretation: C(D1) = 0 when drug 1 does not alter the

effect of drug 2, C(D1) > 0 indicates antagonistic interaction, and C(D1) < 0 indicates a synergistic interaction. The one-drug toxicity functions along with C(D1)

accurately describe the entire two-dimensional response surface (right). Circles, experimental measurements; solid lines, nonlinear fits to functional forms in (A);

error bars indicate ±1 SE of the growth rate estimate (Supplemental Results). The responses to all 19 drug pairs tested are well described by unidirectional

two-drug toxicity functions. See also Figure S2 and Table S5.

(B) Example two-drug toxicity functions C(D) for six different drug pairs. For example, ‘‘C(D) for Tmp’’ (first panel) describes the effects of Cm on trimethoprim

(Tmp). Concentrations are measured in units of MIC = Ki for each drug. Ofl, ofloxacin; Tet, tetracycline; Ery, erythromycin.
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the amplitude of the two-drug toxicity function C(D1)

(Equation 2) by a single parameter, a3 (Figure 3). Assumption

1 is consistent with known resistance mechanisms, such as

upregulation of efflux pumps (Wood and Cluzel, 2012), enzy-

matic degradation, and target modification, all of which reduce

the effective intracellular concentrations of a drug (Chait et al.,

2007). Assumption 2 preserves the shape, but not the magni-

tude, of the two-drug toxicity function C(D1). This assumption
4 Cell Reports 6, 1–12, March 27, 2014 ª2014 The Authors
stems from the idea that new resistant mutants will not funda-

mentally redefine the strategies that the parent cell has evolved

to cope with the stress of specific drugs. There should exist,

therefore, a hidden symmetry unifying the responses of

drug-sensitive and -resistance cells. Under this assumption,

however, the two-drug response surface can still change

dramatically—for example, from synergistic to antagonistic—

when cells become drug resistant. This change is captured
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Figure 3. Single-Drug Toxicity Functions and Coupling Functions (D2,eff/D2) for Drug-Resistant Mutants Can Be Rescaled to Match Those in

Parental E. coli, E. faecalis, and NSCLC Cells

(A) Single-drug toxicity functions (top left, top center) and two-drug toxicity functions (top right) for 18mutant strains isolated by selection in Cm and Cip at various

doses (Figure S3; Table S3). Each color/marker combination represents a single mutant. Drug concentrations are in units of mg/ml for Cm (323 g/mol) and ng/ml

for Cip (331 g/mol). C(D1) functions are constructed point by point from raw growth data (Supplemental Results).

(B) One-drug toxicity functions (bottom left, bottom center) and two-drug toxicity functions (bottom right) for all mutant strains are simple rescalings of the

corresponding functions in the WT cells (Supplemental Results). A set of three scaling parameters, (a1, a2, a3), provide a set of coordinates that define each

mutant. Specifically, mutant one-drug and two-drug toxicity functions are obtained from those of WT cells by applying the following transformations:

D1/D
0
1 = a1D1

D2/D
0
2 = a2D2

C/C
0
= a3C

where a1, a2, and a3 are scaling parameters that describe the change in resistance to drug 1, the change in resistance to drug 2, and the change in the amplitude of

C(D1), respectively, in the resistantmutant. Solid line, bottom: one-drug toxicity functions (left and center) and two-drug toxicity functions (right) that best describe

the rescaled data.

(C–E) Examples of rescaling the amplitude of C(D1) to demonstrate the scaling relations in drug-sensitive and -resistant cells. Left: C(D1) functions for WT (filled

circles) and drug-resistant (open circles) cells. Right: C(D1) functions for WT (filled circles) and drug-resistant (open circles) cells following a rescaling of the

amplitude by a3. Rescaling of the WT two-drug toxicity (black) Dap C mutant (D; Table S1). Drug concentrations are in units of mg/ml for Cm (323 g/mol),

daptomycin (1619 g/mol), and ampicillin (349 g/mol); ng/ml for Cip (331 g/mol); mM for gefitinib (446 g/mol); and nM for 17-AAG (586 g/mol).

In all panels, error bars indicate ±1 SE of the growth rate estimate for toxicity functions (see Supplemental Results) and ±1 SE of the fitted parameter for two-drug

toxicity functions.
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entirely by the scaling factor a3. Hypotheses 1 and 2 are further

motivated by results from the well-characterized MAR system

(Wood and Cluzel, 2012) and by numerical toy models (Supple-

mental Results). If the model is accurate, it predicts that simple
scaling relations establish a quantitative link between the

response surfaces of drug-sensitive and -resistant cells. Impor-

tantly, this scaling approach implies that it may be possible to

predict the full two-drug response of resistant mutants from a
Cell Reports 6, 1–12, March 27, 2014 ª2014 The Authors 5



Figure 4. Method for Inferring theResponse

Surfaces of Drug-Resistant Mutants from

the Response Surfaces of WT Cells

The two-drug response surfaces of WT (drug-

sensitive) cells can be used to infer the responses

of drug-resistant mutants. First, one must extract

the three basis functions that describe the WT

surface (Figure 2). Second, one can estimate the

scaling parameters a1, a2, and a3 using a small

number of measurements of the mutant response

(left) and then fully reconstruct the response

surfaces for each mutant (right).
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small number of measurements when the response of drug-

sensitive cells is known.

To experimentally test the model, we isolated drug-resistant

mutants of E. coli by growing WT cells for 30–60 generations in

various inhibitory concentrations of Cm and Cip either together

or sequentially (see Supplemental Experimental Procedures for

experimental details). The concentrations of Cm and Cip were

chosen along a single contour of constant growth to keep the

conditions of selection approximately constant for all mutants.

We then measured the full response surface and extracted the

three basis functions that described the effects of the same

two drugs (Cm-Cip) on these mutants (Figures 3A, S3A, and

S3B). The collection of responses represents a broad range of

behaviors, with mutants exhibiting a resistance to Cip and Cm

that varies by an order of magnitude or more (Figure 3A, top).

However, Figure 3B (bottom) demonstrates that these different

behaviors can be unified using a single set of basis functions

common to all mutants, and three scaling parameters (a1, a2,

and a3) specific to each mutant, thus supporting our scaling

hypotheses.

Additionally, we found that this scaling approach was valid for

a wide range of cells across several domains of life, including

E. coli, E. faecalis, and human cancer cells (Figures 3C–3E). In

some cases, we observed statistically significant (as measured

by a3) small changes in drug interaction, for example, from

strongly antagonistic to weakly antagonistic (Figure 3C). In other

cases, scaling unified very different phenotypic behaviors, such

as the synergy and additivity of ampicillin and daptomycin in WT

E. faecalis and a daptomycin-resistant (Dap-C) mutant (Fig-
6 Cell Reports 6, 1–12, March 27, 2014 ª2014 The Authors
ure 3D; see also Figure 1D). Even more

surprisingly, scaling laws unified the syn-

ergy and antagonism of 17-AAG and gefi-

tinib found in human NSCLC cells and a

gefitinib-resistant mutant (Figure 3E; see

also Figure 1A). Thus, although response

surfaces can sometimes change mark-

edly when resistance is acquired, we

find that the functional forms of the

underlying basis functions are conserved.

These results suggest that the re-

sponse surfaces of drug-resistant cells

are constrained by those of the drug-

sensitive WT cells. If so, one could fully

characterize the response surface of a
resistant mutant by estimating with only a few measurements

the scaling parameters a1, a2, and a3, thus eliminating the need

for a labor-intensive sampling of the entire surface. Because

this rescaling procedure requires very few measurements, it

allows one to infer behavior even in unsampled regions of

dosage space (Figure 4, schematic).

Scaling Relations Can Be Used to Rapidly Infer
Response Surfaces of Resistant Mutants
To examine whether scaling relations can be used to predict the

response surfaces of resistant mutants, we first focused on three

clinically relevant bacterial species: S. aureus, E. faecalis, and

E. coli. For S. aureus, we measured the full response surface of

WT and Nor-resistant cells for the drug combination Nor-Cm,

which is antagonistic in WT cells (Figure 5A, left; see also Fig-

ure 1F). Using only five randomly selected data points, we

estimated the scaling parameters and used them to infer mutant

growth in unsampled regions of dosage space. The scaling

parameters reflect slightly increased sensitivity to Cm (a1 > 1)

and increased resistance to Nor (a2 << 1). The antagonism

between drugs is equal to that in WT cells (a3 �1; see also Fig-

ure 1F), making this example similar to those previously reported

in E. coli (Figure S3C; Chait et al., 2007).

Next, we compared the responses of a daptomycin-sensitive

strain and three daptomycin-resistant strains of E. faecalis

(Palmer et al., 2011) to combinations of daptomycin and ampi-

cillin (Figures 5B, S4A, and S4B; see also Figure 1D). These

strains were evolved under daptomycin pressure and represent

three distinct evolutionary routes to daptomycin resistance, each
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with a unique set of geneticmutations (Palmer et al., 2011). Using

the WT basis functions, we are able to predict the two-drug

response for each mutant by estimating the parameters a1, a2,

and a3. For the ampicillin-daptomycin combination, all three

mutants demonstrate significant resistance to daptomycin

(a1 < 0.02), increased sensitivity to ampicillin (a2 > 1), and a

drug-drug interaction with slightly (a3 = 0.87, Dap-A mutant) or

significantly (a3 = 0.05, Dap-C mutant) decreased synergy (Fig-

ure 5B; see also Figure 3D).We also accurately inferred response

surfaces for combinations of daptomycin and linezolid, an oxa-

zolidinone that is often used to treat infections of the skin as

well as pneumonia (Figures S4C–S4E).

Finally, we tested the scaling hypothesis for two clinically iso-

latedE. colimutants that shareaparticularly commonmechanism

of drug resistance: modification of the drug target (Cohen et al.,

1989) (748k.01; Figures S4F and S4G). Specifically, each strain

exhibited resistance to DNA synthesis inhibitors (fluoroquino-

lones) arising from distinct mutations in the gene (gyrA) encoding

the target topoisomerase (Cohen et al., 1989). In both cases, the

three-parameter scaling provides an excellent prediction of the

response surfaces to Cm and Cip (Figures S4F and S4G), and

allmutantsexhibit little resistance toCm(a1�1), strong resistance

to Cip (a2 < 0.1), and significantly weaker drug-drug suppression

(a3 < 1) than in theWT. These scaling relationships hold aswell for

multipleE. coli laboratorymutantswith evolved resistance to pro-

tein synthesis inhibitors, including Dox, Ery, and Cm (Figures

S4H–S4K; see also Figures 1B and 1E). We also verified the

scaling relations in a cycloheximide-resistant mutant of the

budding yeast Saccharomyces cerevisiae (Korolev et al., 2012)

exposed to a combination of antifungal agents (Figure S4L).

We next asked whether the scaling hypothesis applies to drug

combinations targeting human cancer cells, which possess

significantly more genetic complexity and redundancy than

microbes. Figure 5C shows the previously discussed gefitinib/

17-AAG combination, where strong antagonism in the parental

NSCLC cells is replaced by synergy in the gefitinib-resistant

(GR6) mutant (Engelman et al., 2007). Remarkably, our rescaling

approach allows us to predict themutant response surface for all

dosage combinations (see also Figure S4N for the same cells

with gefitinib and paclitaxel). We find that there is little resistance

to 17-AAG (a1�1) but a significant increase in gefitinib resistance

(a2 << 1). In addition, a3 switched signs from positive to negative,

which accounts for the observed phenotypic change from an

antagonistic interaction in the parental cell line to a synergistic

interaction in the mutant (recall Figures 1A and 3F). In this

case, the synergy arises because 17-AAG inhibits HSP90, which

leads to decreased MET protein stability (Xu et al., 2012). The

loss of MET, in turn, sensitizes the previously resistant cells to

gefitinib. In terms of our scaling model, the gefitinib resistance

inverts the drug-drug coupling effect of 17-AAG on gefitinib;

rather than lowering the gefitinib toxicity, as in drug-sensitive

cells, the presence of 17-AAG raises the effective gefitinib

toxicity in mutant cells. These results again demonstrate that

the response surfaces can change markedly following the acti-

vation of a resistance event, whereas the functional forms of

the basis functions are conserved. From a practical perspective,

the scaling approach allows us to rapidly recognize the strong

synergy between 17-AAG and gefitinib in resistant cells (Fig-
ure 5C), and thus identify a potent therapy despite the fact that

the drugs are antagonistic in drug-sensitive cells. We also

show that the full response surfaces of RAF inhibitor

(PLX4720)-resistant melanoma cells to combinations of antineo-

plastic drugs can be predicted using the same approach

(Figure S4M).

Scaling Relations Can Be Used to Increase Potency
of Drug Combinations Targeting Cancer Stem Cells
Recent research has also focused on the general drug resistance

that appears in cancer stem cells (CSCs), which are believed to

underlie the resurgence of many tumors following initial drug

treatments (Dick, 2009; Gupta et al., 2009; Reya et al., 2001;

Sachlos et al., 2012). Whereas drug-resistant mutants are typi-

cally resistant to a small number of specific drugs, CSCs are,

in general, more drug resistant than the corresponding cancer

cells, and the resistance is not driven by mutations (Dick, 2009;

Gupta et al., 2009; Reya et al., 2001; Sachlos et al., 2012).

Because of their simultaneous resistance to multiple drugs,

CSCs offer an opportunity to test our scaling approach in the

context of general drug resistance.

We first directly measured the effects of two anticancer drugs,

etoposide and fluorouracil (5-FU), on immortalized human

mammary epithelial (HMLE) cells and on matched HMLE popu-

lations enriched for mammary CSCs (Gupta et al., 2009). We

found that the effects of the individual drugs vary significantly

between cell types, with minimum inhibitory concentrations

(MICs) increased by factors of �8.5 for etoposide and �4 for

5-FU in CSCs. However, the effects of this general drug resis-

tance becomemore complicated when the drugs are combined.

For example, we found that treating the HMLE cells with etopo-

side and 5-FU at concentrations of 0.35 mM and 1.5 mM,

respectively, results in growth inhibition of �50% (full growth

surface shown in Figure 5D, left). One would naively expect a

similar inhibition (50%) of CSC growth when the dosages of

each drug are increased to account for the increased MICs of

the drug individually. However, we measured the inhibitory

effects of this naive combination therapy to be only�20%,which

is substantially less than expected. Interestingly, our scaling

approach can correctly predict this nonintuitive result with only

a few measurements (Figure 5D). Furthermore, the scaling rela-

tions predict improved therapies. For example, using 8.5 mM

of etoposide alone is correctly predicted to restore growth

inhibition to the previous 50% levels (Figure 5D, right). In this

case, we are also able to decrease the total amount of drug

used, compared with the intuitive therapy. Our prediction

quantitatively captures the increased antagonism between

5-FU and etoposide in CSCs, and indicates that scaling relations

may be applicable to broadly drug-resistant CSCs.

Overall, we see a wide range of a3 values from experiments in

E. coli, E. faecalis, S. aureus, S. cerevisiae, and human cancer

cells (Figure S4O), including a3 < 0 (the interaction has changed

from antagonistic to synergistic or vice versa), 0 < a3 < 1 (the

interaction has decreased in magnitude), and a3 > 1 (the inter-

action has increased in magnitude). In all cases, the mutant

response is reconstructed by rescaling the WT basis functions

with only three scaling parameters (a1, a2, and a3; Figures 5

and S4A–S4N). Therefore, our scaling hypotheses, which are
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based on conservation of basis functions, hold for all resistant

cells characterized in this study. The scaling also correctly

preserves the interaction (a3 = 1) in a drug-with-itself mock

experiment (Figures S5A–S5D).

Observed Scaling Relationships Are Unlikely toOccur by
Chance
In view of the smoothness of the typical drug-response surfaces,

it is tempting to think that any two surfaces could perhaps be

related by a simple rescaling. Therefore, it is not a priori clear

whether the scaling relationships reported here reflect some

underlying biological similarity between cellular responses or

the scaling relationships are likely to exist between any two-

dimensional response surfaces. To explore this question, we

developed a null model to quantify the probability of observing

our scaling results by chance in a random ensemble of smooth

response surfaces (Supplemental Results; Figures S5E and

S5F). This analysis reveals that the reported experimental scaling

relationships are unlikely to occur by chance (p < 0.1 for at least

32 of 42mutants in the study; Figure S5E).We also find that basis

functions from some drug pairs can be rescaled to fit a large

number of response surfaces, whereas basis functions from

other drug pairs are highly specific to a given drug combination

(Figure S5F). Overall, this analysis suggests that the reported

scaling relationships do not hold for arbitrary response surfaces

and instead represent an unexpected connection between WT

andmutant response surfaces. In addition, the scaling approach

outperforms standard interpolation methods for predicting

growth in unsampled regions of dosage space (Supplemental

Results; Figures S5G–S5J) and is robust to variations in how

the scaling parameters are determined (Supplemental Results;

Figure S5K; Table S7).

Scaling Relations Reflect Species- and Drug-Specific
Relationships
To further explore the limits of the observed scaling relation-

ships, we asked whether basis functions derived from one

specific bacterial type could be rescaled to infer response sur-

faces in other bacterial species. As a consequence of hypothesis

2 of the model, it should be possible to use identical basis func-

tions for closely related species because they have most likely
Figure 5. Rescaling Parameters Predict the Response of Resistant Mu

Predicting the response of resistant mutants to a two-drug combination require

known (see Figure 4).

(A–C) The responses of resistant mutants to each of three two-drug combinations

and 17-AAG in NSCLC cells [HCC827] [C]) are predicted using scaling parame

surements of the mutant’s growth rate. Similarly, the responses of drug-resistant C

with the basis functions from parental cells and five randomly selected measure

mutants, along with SEs, are given by (A) (1.37 ± 0.03, 0.10 ± 0.002; a3 not neede

0.0043 ± 0.0002, �0.22 ± 0.02). Left: heatmap of relative growth rate in WT cells a

Right, large figure: comparison of experiment and prediction for each drug dosag

root mean-squared error (RMSE) of the predicted two-dimensional mutant grow

mutant growth surface is predicted using five randomly selected data points on th

from experiment (top) and prediction (bottom). Black lines show a single contou

spline interpolation (csaps function in MATLAB).

(B–D) The different contour shapes in WT and mutant cells illustrate that drug int

mg/ml for all drugs except 17-AAG (nM), gefitinib (mM), etoposide (mM), and 5-FU

Error bars indicate ±1 SE of the growth rate estimate (see Supplemental Results
evolved similar strategies to cope with chemical stressors. To

test this idea, we rescaled the WT basis functions measured

for E. coli (strain k01.48) exposed to Cm and Cip in an attempt

to describe the Cm-Cip response surface in mutants from other

bacterial strains. We found that scaled versions of the k01.48

Cm-Cip basis provide an excellent description of drug-resistant

mutants from the same strain (Cohen et al., 1989) (k01.48, Fig-

ure 6A, red). However, using the same basis functions yields

increasingly poor predictions for mutants of more distant

E. coli strains (Figure 6A, blue) as well as for cells of distantly

related bacteria (E. faecalis, Figure 6A, black; S. aureus, Fig-

ure 6A, green). Our results suggest that the scaling relationships

may apply across species of closely related organisms, but in

general they cannot be used to unify the drug response of distant

species.

Similarly, we asked whether the basis functions describing

one drug pair could be rescaled to describe the response surface

of a different drug pair. For this purpose, we used the basis func-

tions from the Cm-Cip response surface (E. coli [BW25113]) to

rescale the response surfaces from other drug pairs in the

same strain (Figure 6B). We found that the basis functions asso-

ciated with Cm-Cip provide an excellent model for the response

to Cm-ofloxacin (Cm-Ofl), a drug pair with similar modes of

action. The same basis also provides a good model for some

other drug pairs, such as Cm-lincomycin (Cm-Linc) and Dox-Ofl,

whereas other drug pairs, including Cm-trimethoprim (Cm-Tmp)

and Ery-Tmp, cannot be well described with the Cm-Cip basis.

Interestingly, the shapes of some sets of basis functions are

similar, especially when the drugs have similar modes of action.

These basis functions may therefore be used to complement

existing strategies (Yeh et al., 2006) for functionally classifying

drugs because our results indicate that they encode drug-

specific information (see also Table S6).

DISCUSSION

We have experimentally shown that the two-drug responses of

sensitive and resistant cells share common features unified by

simple but general scaling relations. We tested these scaling

relations using a broad collection of drugs, including traditional

classes of antibiotics (inhibitors of protein synthesis, DNA
tants to Drug Combinations in Unsampled Regions of Dosage Space

s estimation of only three scaling parameters if the WT two-drug response is

(Cm-Nor in S. aureus [A], ampicillin-daptomycin in E. faecalis [B], and gefitinib

ters estimated with the WT basis functions and five randomly selected mea-

SCs to etoposide and 5-FU are predicted using scaling parameters estimated

ments of the mutant’s growth rate. The parameters (a1, a2, a3) describing the

d), (B) (0.88 ± 0.02, 0.017 ± 0.0005, 0.53 ± 0.06), and (C) (a1, a2, a3 = 0.9 ± 0.05,

nd relative growth rates for five randomly chosen dosages in the mutant cells.

e in the mutant cells. Error bars indicate ±SE of prediction. Inset: histograms of

th surfaces constructed from 2,500 independent trials. In each trial, the entire

e mutant two-drug surface. Right: heatmaps of relative growth rate for mutant

r of constant growth estimated by smoothing the growth surface using cubic

eractions have changed (see also Figures 1 and S1). Drug concentrations are

(mM).

). See also Figure S4.
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A B Figure 6. Scaling Relations Hold across

Related Species or Drug Classes

(A) The basis functions for Cm and Cip in drug-

sensitive E. coli (k01.48) are rescaled to fit Cm-Cip

response surfaces measured in drug-resistant

mutants from the same strain (red) as well as

mutants from E. coli BW25113 (blue), E. faecalis

(black), and S. aureus (green). Deviation from

perfect model is defined as 1 � R2, where the

coefficient of determination, R2, is defined as R2 =

1� SSerr / SStot (where SSerr is the residual sum of

squares between model and data, and SStot is the

total sum of squares, which is proportional to the

variance of the experimental measurements). A

schematic phylogenetic tree is plotted below the

horizontal axis.

(B) The basis functions for Cm and Cip in drug-

sensitive E. coli (BW25113) are rescaled to

fit response surfaces to other drug pairs in the

same strain. Deviation from perfect model is

defined as in (A).

See also Figure S5 for more detailed statistical

analysis.
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synthesis, cell wall synthesis, and folic acid synthesis), clinically

relevant antibiotics (linezolid and daptomycin), and drugs that

induce a general stress response (salicylate). We also used

both classic chemotherapy drugs (e.g., alkylating agents, micro-

tubule inhibitors, and topoisomerase inhibitors) and targeted

therapies. We demonstrated the predictive power of these

scaling relations in a wide range of mutants exhibiting many

resistance mechanisms, including drug-efflux-mediated resis-

tance, target modification (e.g., fluoroquinolone-resistant

E. coli; Figures S4F and S4G), pathway reactivation (gefitinib-

resistant mutant, as shown in Figures 1A, 3E, and 5C;

PLX4720-resistant A375, as shown in Figure S4M), and dediffer-

entiation (CSCs; Figures 6A and 6B). The scaling relations, anal-

ogously to phenomenological laws, are not directly noticeable in

two-dimensional response surfaces. However, when the sur-

faces are decomposed into three basis functions, the underlying

symmetry is clear: the shapes of these functions do not change

when resistance is acquired. Previous work suggested that inter-

actions between inhibitors of a biochemical network reflect the

underlying network topology (Lehár et al., 2007). In our model,

these network properties seem to manifest themselves as

two-drug toxicity functions with specific functional forms (Sup-

plemental Results). Our primary experimental result is that,

surprisingly, these shapes are not fundamentally altered when

cells become resistant, even when the response surfaces of

drug-sensitive and -resistant cells differ dramatically.

From a molecular perspective, these scaling properties may

arise because resistance is conferred by relatively small genetic

changes, and not by any major rewiring of intracellular networks

that govern the global response to drugs. Therefore, the mutant

response is inherently constrained by that of the drug-sensitive

parental cells. These scaling relations are evident in genetically

similar cells, but they break down when applied across evolu-

tionary distant species. Overall, we found these relationships

between drug-sensitive and -resistant cells to be robust within

many organisms, both prokaryotic and eukaryotic, and within

many classes of drugs. Therefore, scaling relationships may
10 Cell Reports 6, 1–12, March 27, 2014 ª2014 The Authors
reduce the complexity of drug-resistance studies by unifying

the responses of drug-resistant mutants with those of drug-

sensitive cells even before specific biochemical mechanisms

have been elucidated.

EXPERIMENTAL PROCEDURES

Cell Lines, Strains, and Reagents

Bacteria

The bacterial strains used in this study are listed in Table S1.

Mammalian Cells

HCC827 parental (WT) and gefitinib-resistant (GR6) cells, the latter of which

were evolved by stepwise selection in increasing concentrations of gefitinib,

were obtained from J. Engelman (Massachusetts General Hospital) and grown

in RPMI with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin.

HMLE cells stably expressing lentiviral short hairpin RNAs (shRNAs) against

GFP (control) and E-Cadherin were obtained from P. Gupta (Whitehead Insti-

tute for Biomedical Research) and grown in media consisting of equal parts of

(1) complete MEGM media (Lonza) and (2) Dulbecco’s modified Eagle’s

medium with 10% FBS and 1% penicillin/streptomycin (Gupta et al., 2009).

A375 parental (WT) cells were obtained from ATCC and grown in RPMI with

10% FBS and 1% penicillin/streptomycin. PLX4720-resistant A375 cells

were engineered by stably overexpressing the kinase C-RAF, which can confer

resistance to PLX4720 by overriding B-RAF dependence (Montagut et al.,

2008). C-RAF-expressing lentiviruses were produced as previously described

(Johannessen et al., 2010; Wood et al., 2012). A375 parental cells were

infected at a 1:10 dilution of virus in six-well plates in the presence of 7.5 mg/ml

polybrene and centrifuged at 1,200 g for 1 hr at 37�C. At 24 hr after infection,

blasticidin (10 mg/ml) was added and cells were selected for 72 hr, after which

the blasticidin was removed and growth inhibition assays were performed.

Drugs

Drug solutions were made from solid stocks (Table S2). All antibiotic stock

solutions were stored in the dark at �20�C in single-use daily aliquots. All

drugs were thawed and diluted in sterilized media for experimental use.

Growth-Inhibition Assays

Growth Assay for Bacteria

We inoculated media (LB for E. coli, TSB for S. aureus, and BHI for E. faecalis)

from a single colony and grew the cells overnight (12 hr at 30�Cwith shaking at

200 rpm for E. coli and S. aureus; no shaking for E. faecalis). Following

overnight growth, stationary phase cells were diluted (�5,000-fold for E. coli
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and S. aureus; �1,000-fold for E. faecalis) in media. Following the initial

dilution, S. aureus and E. faecalis were grown in drug-free media for 1 hr prior

to addition of drugs and transfer to 96-well plates. We transferred E. coli to

96-well plates (round bottomed, polystyrene; Corning) immediately following

dilution. For each experiment, we set up a two-dimensional matrix of one or

two drug combinations in each of four 96-well plates (165–190 ml media per

well). For the remainder of the experiment after the addition of drugs

(�10–12 hr), cells were grown at 30�C (with shaking at 1,000 rpm on four

identical vibrating plate shakers for E. coli; no shaking for E. faecalis). A600

(absorbance at 600 nm, proportional to optical density) was measured at

15–25 min intervals (with one exception; see below) using a Wallac Victor-2

1420 Multilabel Counter (PerkinElmer) combined with an automated robotic

system (Twister II; Caliper Life Sciences) to transfer plates between the

shakers and the reader. Growth rates in bacteria were determined by fitting

background-subtracted growth curves (A600 versus time) in early exponential

phase (�0.01 < A600 < 0.1) to an exponential function (MATLAB 7.6.0 curve-

fitting toolbox; MathWorks). For S. aureus with Nor-Cm (Figure 5), effective

exponential growth rates were estimated using background-subtracted A600

measurements at times t = 2 hr and t = 6 hr. True exponential growth curves

are therefore not required for this particular assay, which is instead similar to

traditional viability assays that compare cell numbers at the end of the

experiment (see below). Growth rates were normalized by the growth of cells

in the absence of drugs. Error bars, unless otherwise noted, are taken to

represent ±1 SE of the fitted parameter.

Growth Assay for Mammalian Cells

Cells were trypsinized, counted, and seeded into 96-well plates at 2,500 cells

per well. DMSO or concentrated dilutions of indicated drugs (in DMSO) were

added to the cells (1:1,000 in standard media) 24 hr later in otrder to yield

the indicated final drug concentrations. Cell viability was measured 4 days

after drug addition using the Cell Titer Glo luminescent viability assay

(Promega). Viability was calculated as the percentage of control (untreated

cells) after background subtraction. Three replicates were performed for

each drug/concentration.

Evolved Drug-Resistant Mutants in E. coli and S. aureus

Drug-resistant E. coli mutants were evolved under the conditions listed in

Table S3. S. aureus Nor-resistant mutants were isolated on Tryptic Soy Agar

(BD Biosciences) plates containing 4 mg/ml Nor, followed by spreading of

overnight culture of Newman strain.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Results, Supplemental

Experimental Procedures, five figures, and seven tables and can be found

with this article online at http://dx.doi.org/10.1016/j.celrep.2014.02.007.
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