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Over the last decades, bacterial chemotaxis in Escherichia coli has
emerged as a canonical system for the study of signal transduction.
A remarkable feature of this system is the coexistence of a robust
adaptive behavior observed at the population level with a large
fluctuating behavior in single cells [Korobkova E, Emonet T, Vilar
JMG, Shimizu TS, Cluzel P (2004) Nature 428:574–578]. Using a
unified stochastic model, we demonstrate that this coexistence is
not fortuitous but a direct consequence of the architecture of this
adaptive system. The methylation and demethylation cycles that
regulate the activity of receptor-kinase complexes are ultrasensi-
tive because they operate outside the region of first-order kinetics.
As a result, the receptor-kinase that governs cellular behavior
exhibits a sigmoidal activation curve. We propose that the steep-
ness of this kinase activation curve simultaneously controls the
behavioral variability in nonstimulated individual bacteria and the
duration of the adaptive response to small stimuli. We predict that
the fluctuating behavior and the chemotactic response of individ-
ual cells both peak within the transition region of this sigmoidal
curve. Large-scale simulations of digital bacteria suggest that the
chemotaxis network is tuned to simultaneously maximize both the
random spread of cells in the absence of nutrients and the cellular
response to gradients of attractant. This study highlights a funda-
mental relation from which the behavioral variability of nonstimu-
lated cells is used to infer the timing of the cellular response to
small stimuli.

agent-based � fluctuation–dissipation � noise � ultrasensitivity

Molecular noise (i.e., stochastic fluctuations) has been largely
reported as one important source of phenotypic variability in

a number of biological systems as diverse as gene expression and
signal transduction in prokaryotes and eukaryotes (1–3). A stan-
dard method to characterize noise in biological systems is to analyze
the distribution of behaviors across a population of cells at steady
state. This approach has been powerful in identifying specific
molecular mechanisms responsible for controlling phenotypic vari-
ability. Alternatively, the temporal evolution of noise within a single
cell also contains key information about underlying cellular dynam-
ics, but this approach is seldom used to characterize cellular
behavior outside the steady-state regime (4). It is conceivable,
however, that biological systems that are sensitive to intracellular
spontaneous noise are also sensitive to small extracellular pertur-
bations such as a sudden change of environmental conditions (5).
We wish to investigate whether there exists in bacterial chemotaxis
a general relationship between the fluctuation of cellular behavior
in single cells and the timing of the cellular response to a small
external stimulus.

Bacterial chemotaxis, a cellular locomotion system, has become
a classic model for signal transduction. Although the chemotaxis
network consists of just a few molecular species, it can perform
complex cellular functions such as adaptation in response to
environmental changes. Escherichia coli bacteria swim using fla-
gella activated by rotary motors. When motors spin counterclock-
wise (CCW), the flagella form a corkscrew bundle whose rotation
propels the cell in a smooth trajectory called a run. Clockwise (CW)
spinning of motors favors the disruption of the bundle and causes

the cell to tumble. The trajectory of a swimming cell resembles that
of a random walk, which consists of a succession of runs and
tumbles. When exposed to a sudden increase of chemical attractant,
the cell lengthens the time interval between consecutive tumbles.
This modulation of tumbling rate allows bacteria to bias their
random walk toward a source of attractants and to perform
chemotaxis.

A combination of experiments and models has demonstrated
that, at the population level, E. coli bacteria display robust exact
adaptation: After an initial response to a chemical stimulus, the
average tumbling rate returns precisely to its steady prestimulus
level (6–8). Remarkably, these studies showed that the property of
exact adaptation is robust to variations of biochemical parameters
such as the concentration and reaction rates of the chemotaxis
proteins (7, 8). In contrast with population measurements, recent
single-cell experiments have revealed that the switching behavior of
a single motor, from a cell adapted to a homogeneous environment,
exhibits large temporal fluctuations (9, 10). It was found that the
characteristic time scale of these fluctuations was so large that a
steady tumbling rate could be defined only when taking time
averages longer than several hundred seconds. The amplitude of
these fluctuations, hereafter called noise, exceeded that expected
from Poisson statistics. Very long time series of switching events
from individual flagellar motors exhibited distributions of run
(CCW) intervals with long tails. These distributions are in general
not exponentially distributed as it was previously believed (9, 10).

Here, we develop a unified stochastic model of adaptation in
bacterial chemotaxis and use the fluctuation–dissipation theorem
(11, 12) to interpret how the noise in nonstimulated cells is related
to the cellular response to a small chemical stimulus. We show that
the design of the activity-dependent (de)methylation cycles that
provide robust adaptation is equivalent to the architecture of a
covalent modification cycle (13). We demonstrate how the large
behavioral variability observed experimentally in single nonstimu-
lated bacteria arises from the amplification of molecular noise in the
ultrasensitive covalent modification cycle. As a result, the steady-
state activity of the kinase as a function of the ratio of the
concentrations of the modifying enzymes CheR and CheB is
sigmoidal (Hill coefficient �1). We therefore analyze how the slope
of the kinase activation curve simultaneously controls both the
amplitude of spontaneous fluctuations and the relaxation time of
the system in response to a small stimulus. The prediction emerging
from this analysis is that the noisiest cells should also exhibit the
largest chemotactic response.
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Results
Kinetics of the Adaptation Module. The adaptation system in bac-
terial chemotaxis is governed by a well defined module of specific
interacting proteins (Fig. 1). This adaptation module consists of two
antagonistic enzymes, CheR and phosphorylated CheB (CheB-P),
which respectively add and remove methyl groups at multiple
receptor residues of the receptor-kinase complex. This series of
methylation and demethylation cycles controls the activity of the
histidine kinase CheA in the complex. Methylation and demethyl-
ation are complex biochemical processes that involve the enhanced
recruitment of CheR and CheB to the receptors by a tethering site
that is distinct from methylation sites (14, 15). As in previous models
of chemotaxis (7, 16–23), we coarse-grain the underlying biochem-
ical details to capture the behavior of the full chemotaxis system
obtained from experiments on living cells. In particular, we assume
that receptor-kinase complexes can be either active or inactive (23),
and we use the Barkai and Leibler activity-dependent feedback in
the receptor modification system that yields robust exact adaptation
(7, 8) (Fig. 1B). We use Michaelis–Menten kinetics for the methy-
lation–demethylation steps of the complexes. Here, CheR
(CheB-P) binds the methylation sites only of inactive (active)
receptors (16–23). But in Sect. 4.2 of supporting information (SI)
Appendix, we also consider two alternative hypotheses where CheR
methylates the receptors in both active and inactive conformations,
or where only the catalytic step of the methylation reaction is
activity dependent. Only the latter assumption is incompatible with
single-cell experiments. We report separately the concentration of
free receptor complexes and the concentrations of receptor com-
plexes bound to CheR and/or CheB-P. Under these conditions, the
temporal evolution of the average methylation level, M, of free
receptors throughout the methylation–demethylation cycles (19)
obeys Eq. 1 (see Materials and Methods):

dM
dt

�
kr�r

Kr � A
Ç

r

A �
kb�bp

Kb � A*
Ç

b

A*. [1]

Here, A* and A are the concentrations of free active and inactive
receptor complexes, and r and b are the rates of methylation and
demethylation of inactive and active receptors complexes. The
parameters �r and �bp are the concentrations of CheR and CheB-P.
Kr and Kb are the effective Michaelis–Menten constants for the
methylation–demethylation of a receptor complex, and kr and kb

are the corresponding catalytic rates. The total concentration of
receptor complexes is constant:

A�1 �
r
kr
�

Ç

Alot

� A*� 1 �
b
kb
�

Ç

A*lot

� 1. [2]

The first (second) term in Eq. 2 represents the total concentration
of inactive (active) receptor complexes including those bound to
CheR and CheB. Eq. 2 is equal to 1 because we normalize all of the
concentrations (A, �r, Kr, etc.) with the concentration, N, of receptor
complexes present in the system. The concentration of active and
inactive receptors at steady state, A*tot and Atot, is independent from
the ligand concentration (see Materials and Methods), which is
consistent with the property of perfect adaptation (7, 18). We
model the phosphorylation cascade using mechanisms and param-
eter values similar to those proposed by Sourjik and others (19, 20,
24): The rate of autophosphorylation of the kinase CheA is
proportional to the total kinase activity A*tot and the phosphate
transfer from the kinase to CheY and CheB is proportional to the
concentration of phosphorylated kinases (Eqs. S6–S8 of SI
Appendix).
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Fig. 1. Modular representation of the chemotaxis system. (A) Transmembrane receptors bind the ligand (L) and control the activity of histidine kinases CheA
(A). The kinase CheA phosphorylates the response regulator CheY (Y) into the active form CheY-P (Yp). CheY-P diffuses throughout the cell and interacts with
the flagellar motors to induce clockwise rotation (tumble). The phosphatase CheZ (Z) dephosphorylates CheY-P (42). A sudden increase of ligands �L causes the
kinase activity to decrease by �A*. The chemotaxis system is equipped with an adaptation module in which two antagonistic enzymes regulate the activity of
the kinase-receptor complexes. The methyltransferase CheR (R) catalyzes the autophosphorylation of CheA by methylating the receptors. The active kinase A*
phosphorylates the methylesterase CheB in CheB-P (Bp). CheB-P removes methyl groups from active receptor complexes, which catalyzes kinase deactivation. (B)
The adaptation module consists of a series of slow (de)methylation reactions that modulate the activity of the receptor complexes. We use a two-state model
where the probability am of a receptor complex to be in active conformation depends on the occupancy of its ligand binding sites and on the level of methylation
of the receptors that ranges within m � 0, . . . , mmax (7, 17–19). mmax is the total number of methylation sites. We assume that CheR only methylates inactive
complexes (43), whereas CheB-P only demethylates active complexes (44) (details on the model and alternative hypotheses in Sect. 4 of SI Appendix).
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Importantly, we find that the equation (Eq. S15 of SI Appendix)
defining the steady state of the kinase activity is identical to the
equation obtained by Goldbeter and Koshland (13) for covalent
modification of a common substrate by two antagonistic enzymes
(compare figure 3 in ref. 13 with Eq. S15 of SI Appendix). Thus, the
adaptation module (Fig. 1) should share some of the properties of
a covalent modification cycle. As in ref. 13, the normalized con-
stants, Kr and Kb, control the steepness of the activation curve of the
kinase. When Kr and/or Kb are �1, the activation curve is steeper
than a hyperbolic function (Hill coefficient �1). The ratio � �
kr�r/kb�bp of the maximal enzymatic velocities determines the
steady-state activity of the kinase (13). Because the ratio � is
proportional to the ratio of [CheR] to [CheB-P], it can be easily
adjusted by changing the relative concentration of these two
proteins.

Using recent biochemical parameters (Table S1 of SI Appendix),
we plotted the steady-state activity of the kinase, A*tot, as a function
of [CheR] and for [CheB] fixed at wild-type level (Fig. 2A). In the
absence of the CheB-P feedback loop, the kinase activation curve
exhibits an effective Hill coefficient of 3.5. In the presence of the
CheB-P feedback loop, the curve is less steep (Hill coefficient �2.5)
(Figs. 2B). This feedback loop also helps maintaining the kinase
activity within the narrow functioning range of the rotary motor
(20). The kinase activity as a function of 1/[CheB], and [CheR] fixed
at wild-type level, exhibits a Hill coefficient �1 as well (data not
shown). These results suggest that the adaptation module in bac-
terial chemotaxis is more sensitive, namely ultrasensitive (13), to
small variations of [CheR] and [CheB-P] than a standard hyperbolic
activation curve. Outside of the transition region of the sigmoid
(Fig. 2B), the kinase would be either fully active or fully inactive.
Thus, we expect the ratio � of the methylation and demethylation
velocities from wild-type cells to lie within the transition region of
the sigmoid where the activity of the kinase can vary (see alternative
models in Sect. 4 of SI Appendix) (16).

Stochastic Model of the Adaptation Module. Recent experiments
showed that individual E. coli bacteria adapted to a homogeneous

environment exhibit large temporal variations in their behavior
(10). It was hypothesized that the observed behavioral variability
was due to the fluctuations in kinase activity. More specifically, the
slow methylation–demethylation processes in the adaptation mod-
ule govern the fluctuations in kinase activity. Three complementary
experiments in which cells did not display large fluctuations at long
time scales support this hypothesis: (i) when [CheY-P] was not
regulated by the chemotaxis network but substituted by the active
mutant CheYD13K stably expressed from an inducible plasmid; (ii)
in mutant cells whose receptors have a fixed methylation level; (iii)
behavioral variability was found tunable in �cheR mutant cells
complemented with various levels of [CheR]. Behavioral variability
decreased from its maximal to minimal value when [CheR] in-
creased from 1- to 4-fold wild-type level (10).

In this section, we wish to discuss how the steep kinase activation
curve (Hill coefficient �1) (Fig. 2B) could amplify the spontaneous
stochastic fluctuations associated with the methylation and demeth-
ylation reactions. We show that the amplification of fluctuations in
kinase activity is large enough to produce the large behavioral
variability observed experimentally in nonstimulated cells (10).
Chemotaxis assays are usually performed in media that do not
support growth but that provide in excess the essential elements to
produce energy. Consequently, we consider bacteria that are
adapted to a homogenous environment to have reached the equi-
librium (25). Under this condition, thermal fluctuations cause
spontaneous fluctuations of the rate constants in the chemotaxis
network (11, 26).

We use a linear noise approximation (see Sect. 2.5 of SI Appen-
dix) (11, 12, 27, 28) to derive the spontaneous noise in the kinase
activity (and in [CheY-P]) around the steady state (Fig. 2 A and B).
This approximation allows us to compute the relaxation time, �a,
and the power spectrum of the spontaneous fluctuations in the
output signal of the chemotaxis system. The relaxation time is the
typical time scale that defines the steady state of a nonstimulated
cell. At time scales shorter than �a, the spontaneous fluctuations of
the system are strongly correlated and the behavior is unsteady.

For the sake of simplicity, we first ignore the CheB phosphory-
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Fig. 2. Sensitivity of the adaptation module without (A and C) and with (B, D, and E) the CheB-P feedback loop on CheA. (A) Total kinase activity A*tot as a function
of [CheR] for a fixed wild-type level of [CheB] (model parameters in Table S1 of SI Appendix). Hill coefficient, H � 3.5. (C) Relaxation time �a (black) and variance
�a

2 (gray) of the noise associated with the total kinase activity. (B and D) Same as A and C with the CheB-P feedback loop on CheA. H � 2.5. Gray-shaded area,
functioning range of the motor [1.5 � [CheY-P] � 4.5 �M (45)]. (Inset) Relaxation time averaged from a population of cells (104) with cell-to-cell variability in
the levels of CheR and CheB (see Sect. 5 of SI Appendix). (E) Relaxation time (surface) and variance of the noise (color) associated with the total kinase activity
as a function of [CheR] and 1/[CheB]. The black dot indicates the wild-type cell (Table S1 of SI Appendix).
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lation step. The spontaneous fluctuations in kinase activity, 	A*,
include ‘‘fast’’ fluctuations in receptor activity due to the binding
and unbinding of ligand and also slow fluctuations 
	M associated
with the methylation–demethylation reactions (see Materials and
Methods). At long time scales, only the slow fluctuations are
relevant and 	A* � 
	M. Insertion of the latter relation into Eq. 1
and the use of the linear noise approximation yield the noise, 	A*tot,
associated with the total kinase activity in nonstimulated cells:

d
dt

	A*tot � �
1
�a

	A*tot � �Da 	�a. [3]

Here, 	�a is a source of stochastic white noise and Da is the strength
of the spontaneous fluctuations associated with (de)methylation
reactions of the receptors. Within the linear noise approximation,
the individual methylation and demethylation steps follow simple
Poisson statistics. Summing up the contributions from all of the
methylation and demethylation steps, we find that Da is propor-
tional to the sum of the methylation and demethylation velocities
(see Sect. 2.5 of SI Appendix):

Da �

2

N
�r�A� � b�A� *� �


2

N
2b�A� *. [4]

Interestingly, Da is independent of the slope (i.e., the Hill coeffi-
cient) of the kinase activation curve [bA* is approximately kb�bp/(1
	 2Kb) � kb�bp in the middle of the transition]. By contrast, we find
that the relaxation time, �a, is proportional to the slope of the kinase
activation curve (see Materials and Methods):

�a��r� �
1


bA* � �A*
� ln � r

�
�b

. [5]

Eq. 3 is analogous to the Langevin equation ẋ � 
�x 	 f(t) that
describes the fluctuations of a mass-spring system in a viscous fluid,
with spring constant � � 2kBT/(�aDa), damping constant  �
2kBT/Da, and random force f(t). Fluctuations and dissipation are
related through the fluctuation–dissipation theorem � f(t)f(t�) �
2kBT	(t 
 t�), where T is the temperature and kB is the Boltzmann
constant (11). As a consequence, the variance of the spontaneous
fluctuations in kinase activity 	A*tot is �a

2 � kBT/� � �aDa/2. Thus,
increasing the Hill coefficient of the kinase activation curve is
equivalent to decreasing the spring constant � in the mass-spring
system without changing the damping constant . The higher the
Hill coefficient, the larger the fluctuations of the kinase activity, �a

2,
and the longer the relaxation time, �a. Importantly, we find that �a
and 1/�a

2 calculated for the full adaptation module are proportional
to the relaxation time and the inverse of the noise for one covalent
modification cycle [e.g., the Goldbeter and Koshland system (13)]
with the proportionality factor 1/
.

A practical way to study the behavioral variability of a nonstimu-
lated bacterium is to plot the power spectrum associated with the
spontaneous fluctuations in the output of the full chemotaxis
system. The Fourier transform of Eq. 3 gives the power spectrum
of the spontaneous fluctuations of the kinase activity. Similarly, we
also calculate the power spectrum of the fluctuations of [CheY-P]
from the full pathway that includes the CheB-P feedback loop (see
Sect. 2.6 of SI Appendix). In Fig. 3, we plot the power spectra of the
fluctuations of [CheY-P] for various values of [CheR] and the
Michaelis–Menten constants Kr and Kb. Using recently published
biochemical parameters (29), we find that this model best repro-
duces single-cell experiments (power spectra) (10) when the fol-
lowing two conditions are fulfilled: (i) Kr and Kb are �10
1 and (ii)
the methylation and demethylation catalytic rates kb and kr are
adjusted such that wild-type cells, like in experiments, exhibit the
noisiest behavior (see Table S1 of SI Appendix). The values of these
parameters are also in agreement with biochemical data and
parameters used in earlier models (see Sects. 3.2 and 4 of SI

Appendix). By contrast, when Kr, Kb � 1, we find that the behavioral
variability is not as sensitive to variations in [CheR] as in experi-
ments (10). Similarly, when Kr, Kb � 10
2, the difference in
behavioral variability between wild-type and mutants cells that
express 4-fold wild-type level of [CheR] is too large in comparison
with experiments (10).

The power spectra in Fig. 3 exhibit two characteristic (knee)
frequencies. At low frequency, the fluctuations of kinase activity
govern the fluctuating behavior of the full system. The position of
the knee at long time scales reflects the magnitude of �a

2 and �a,
which depend on [CheR] and [CheB-P]. At short time scales, the
second knee frequency corresponds to the spontaneous fluctua-
tions occurring within the phosphorylation cascade, and its position
depends only on the time scale associated with the phosphorylation
of CheY (Fig. 1A). Next, we plotted the noise in kinase activity, �a

2,
and the relaxation time, �a, as a function of [CheR], in the absence
or presence of the CheB-P feedback loop (Fig. 2 C and D). As
expected for a covalent modification cycle with a Hill coefficient �1
(13, 30–32), �a

2 and �a peak within the transition region of the kinase
activation curve (Fig. 2C). This effect is similar to the one observed
in refs. 30 and 32. In the presence of the CheB-P feedback loop, the
overall profiles of the variance and relaxation time as a function of
[CheR] are conserved, with the exception that �a decreases at very
low levels of CheR (Fig. 2D). We also find that the CheB-P
feedback loop slightly reduces the noise and the relaxation time (see
detailed analysis in Sect. 2.4 of SI Appendix). We obtain similar
results when we compute �a

2 and �a as a function of 1/[CheB]. In Fig.
2E, we plot �a

2 and �a as a function of both [CheR] and 1/[CheB]
for the whole system including the CheB-P feedback loop. The
presence of the crest over the hyperbolic surface is the signature of
the deviation from first-order kinetics. As expected, large fluctu-
ations in kinase activity coincide with long relaxation times.

Figs. 2 and 3 suggest that in wild-type cells, the ratio � of the
methylation and demethylation velocities is tuned to the transition
region of the kinase activation curve (Fig. 2B) to exhibit fluctua-
tions (Fig. 3) similar to those observed experimentally (10). This
model is also compatible with the experimental observation in
single cells where behavioral variability is maximal when CheR is
expressed at wild-type level and decreases to the variability ex-
pected from Poisson statistics when [CheR] is expressed at 4-fold
wild-type level (10).

Relationship Between Behavioral Variability in Nonstimulated Cells
and the Timing of the Chemotactic Response to Small Stimuli. The
critical hypothesis in this section is that the behavioral variability

re
w

o
P

Frequency [Hz]

Kr

Fig. 3. Power spectra of the fluctuations of the output signal (CheY-P) from
nonstimulated cells. Shown are 1-fold (black), 2-fold (gray), and 4-fold (light
gray) wild-type levels of CheR for a fixed wild-type level of [CheB]. For Kr and
Kb, the spectra are in agreement with experiments in ref. 10. For Kr and Kb 5
times smaller or 10 times larger, the differences between the power spectra of
wild-type and mutants are too large or too small in comparison with those in
ref. 10.
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observed in nonstimulated single cells is fundamentally related to
the timing of the response of stimulated cells. Because stimuli
encountered by the bacterium in its natural habitat may be small,
we calculate the response to stimulus using a linear perturbation
analysis of the kinetic system. Although we chose to keep our study
independent from the actual chemical stimulus present in the
environment, the chemotactic response in the real system also
depends on the initial amplification of the input stimulus mediated
by complex allosteric mechanisms taking place in the receptor-
kinase complex (17, 22, 33–37). In this model, we consider that a
small external perturbation, such as a sudden exposure to attract-
ant, causes an ‘‘instantaneous’’ change of the receptor activity,
�A*input. During the subsequent adaptation, the changes �M in the
methylation level of the receptors govern the changes in kinase
activity. We linearize Eq. 1 and eliminate �M (see Materials and
Methods) to obtain the input–output relationship of the adaptation
module solely in terms of changes in total kinase activity �A*input:

d
dt

� A*tot � �
1
�a

� A*tot �
d
dt

� A*input. [6]

Within this linear approximation, the pathway relaxes with the same
time scale �a in response to either an external stimulus or internal
spontaneous noise (Eqs. 3 and 6). Thus, one can infer the sensitivity
of the chemotactic response �A*tot(t) to a small external perturba-
tion �A*input by characterizing the time correlation of the noise,
	A*tot, in nonstimulated cells. In this picture, a large �a will cause on
average long runs following a small step stimulus �A*input. Conse-
quently, we interpret the relaxation time �a as a relative measure of
the sensitivity of the chemotaxis system in response to a small
external perturbation �A*input. We expect the chemotactic response
to peak with the relaxation time �a at about wild-type level of
[CheR] and 1/[CheB] (Fig. 2 D and E). For small or large values of
[CheR] and/or 1/[CheB], it is conceivable that [CheY-P] becomes
too small or too large to fall within the narrow functioning range of
the motor. Under this extreme condition, the motor does not switch
and the system is not chemotactic. In population measurements (8),
it is difficult to observe the peaking of the relaxation time because
of the inherent cell-to-cell variability of cheR and cheB expression
levels (Fig. 2D Inset and Sect. 5 of SI Appendix), but this prediction
should be testable by the means of single-cell experiments.

To highlight the significance of the relaxation time for chemo-
taxis, we hypothesize that the average duration of runs varies like
the time �a when cells respond to small input stimuli (Fig. 4A). We
anticipate that the chemotactic drift associated with cells swimming
up-gradient of nutrients will be larger for wild-type cells with a
larger �a than that of CheR mutants (Fig. 4B). We tested this
hypothesis by performing large-scale computer simulations with the
agent-based simulator AgentCell (38) (www.agentcell.org). We find
that the chemotaxis response decreases with small variations in
[CheR] relative to wild-type level (Fig. 4C). Small changes in the
concentration of CheB from the wild-type level produced similar
results (Fig. S8 of SI Appendix). In these simulations, we adjusted
the narrow functioning range of the motor so that the CW bias
would remain the same in all populations expressing various levels
of [CheR] (CW bias � 0.23). In this way, we ensured that the
changes in chemotactic response were solely caused by the changes
of the relaxation time and not by the differences in tumbling rate.

Because wild-type cells display the largest behavioral variability,
they spread farther than mutant cells in the direction perpendicular
to the gradient of nutrient (Fig. 4D). It is then conceivable that the
nonlinearity (i.e., Hill coefficient �1) of the adaptation module (10)
confers two advantages. First, it enhances the chemotactic drift by
producing a long relaxation time. Second, it produces a large
behavioral variability that allows a population of bacteria to explore
a wider area. These two predictions should be testable experimen-
tally. In real bacterial populations, cell-to-cell variations of [CheR]
and [CheB] arise naturally. Given the fine-tuning of the chemo-

tactic response on [CheR] and [CheB-P], we anticipate the exis-
tence of molecular mechanisms to limit the variation of the ratio of
the methylation–demethylation velocities. For example, cheR and
cheB genes are adjacent on the multicistronic meche operon, a
strategy known to reduce independent variations between the
expression of the two genes (Fig. S6 of SI Appendix). Another
mechanism that helps maintaining the [CheR]/[CheB-P] ratio is the
existence of the negative-feedback loop on CheB as illustrated in
ref. 20.

This study reconciles the presence of large behavioral variability
observed at the single-cell level with the chemotactic response of a
cellular population. From the design analysis of the chemotaxis
system, we showed that the nonlinearity of the adaptation mech-
anism simultaneously amplifies both the noise and the relaxation
time in the chemotaxis system. This approach highlights a key
property of the adaptive system in chemotaxis, which consists of a
relationship between cellular response and behavioral variability.
Large-scale simulations of digital bacteria suggest that the chemo-
taxis network is tuned to simultaneously maximize both the random
spread of cells in the absence of attractants and the cellular response
to gradients of attractant. The ability to infer the timing of cellular
response to small stimuli from the noise in nonstimulated cells
should be applicable to a wide range of biological systems.

Materials and Methods
Kinetic System. Derivation of the full kinetic and stochastic models is available in
Sect. 2 of SI Appendix. Ligand binding and conformational changes are much
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Fig. 4. Relationship between relaxation time and chemotactic drift. (A)
Temporal evolution of the kinase activity relative to steady state upon sudden
deactivation of active receptor complexes for 1-fold (black), 2-fold (gray), and
4-fold (light gray) wild-type level of [CheR] and fixed wild-type level of [CheB].
We normalized the kinase activity with that of wild-type cells. Increasing
[CheR] causes a reduction of the relaxation time �a. In all cases, the initial
perturbation is �4.4% of the wild-type steady-state kinase activity (�100
receptor complexes). Simulations of a single covalent modification cycle (Fig.
1 A) using Stochastirator (http://web.mit.edu/endy/www/sections/re-
sources.html) (parameters are in Table S1 of SI Appendix). (B) Role of the
relaxation time in chemotaxis. Cells with longer relaxation time swim farther
along the gradient of attractant (gray shade). (C) Effect of variations of [CheR]
on the chemotactic response of a bacterial population of 400 cells. Digital
swimming bacteria are exposed to a constant gradient of aspartate [dL/dz �
10
8 M/�m, L(z � 0) � 1 �M]. Shown is the percentage of cells in the gradient
that are above z � 1 mm as a function of time: 1-fold (black), 2-fold (gray), and
4-fold (light gray) wild-type [CheR] level. Dashed line, wild-type response
without gradient. The CW bias for mutant and wild-type cells is 0.23. The initial
position of the bacteria is z � 0 mm. (D) Position of the cells from C with 1-fold
(blue) and 4-fold (green) wild-type level of CheR after 12 min. Below the gray
transparent plane (z � 
0.1 mm) there is no nutrient, and bacteria perform an
unbiased random walk. Above the plane the random walk is biased upward
the gradient of aspartate.
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faster than the (de)methylation reactions. Therefore, we describe the activity of
receptor complexes using equilibrium probabilities am(L) (Fig. 1B) that are func-
tions of the concentration of ligand in the external medium. The subscript m �
0, . . . , mmax indicates the methylation level of the receptor complex. To ensure
perfect adaptation, we assume that a0(L) � 0 and ammax(L) � 1 (18). The methy-
lation–demethylation steps and the time evolution of the concentrations Xm of
free (not bound to enzyme) receptor complexes with m methyl groups (Fig. 1B)
are governed by (19)

d
dt

Xm � r��1 � am
1�Xm
1 � �1 � am�Xm�

� b�am	1Xm	1 � amXm�. [7]

Multiplying Eq. 7 with m and summing over all m’s gives Eq. 1, where A* �
�mamXm, A � �m(1 
 am)Xm, and M � �mmXm.

Perturbation Analysis of the Adaptation Module. The perturbation of the kinase
activity �A* around steady-state A� * is

� A*�t� � �
m�0

mmax

�am� t�Xm

Ç
� A*input

� �
m�0

mmax

a� m�Xm� t�
Ç

� A*adapt

� � A*input � 
�M .

[8]

To keep our analysis independent from various models of receptors, we use
�A*input directly as the input of the adaptation module without detailing the
relationship of �am to changes in ligand concentration (Fig. 1B). The term
�A*adapt represents the change in kinase activity due to small changes in the
methylation levels of the receptors at constant external concentration of
ligand, L. In previous models of bacterial chemotaxis (16, 19, 20), the proba-
bility of activation of receptors complexes at steady state increases approxi-
mately linearly with the number of methyl groups when the external concen-
tration of ligand is small (Fig. S7 of SI Appendix). In our linear perturbation
analysis, we take ām � m/mmax. The second term in Eq. 8 becomes �A*adapt �

�M with 
 � 1/mmax. When considering the slow stochastic fluctuations in
nonstimulated cell we have 	A* � 	A*input 	 
	M � 
	M. This linear approx-
imation simplifies the analytical treatment while capturing the basic depen-
dence of the kinase activity on methylation level as established by biochemical
data (20, 34, 39). We validate our analytical results with stochastic simulations
that include nonlinear activation probabilities am(L) (see Sects. 4 and 7 of SI
Appendix). In the cases where the activation probability deviates significantly
from ām � m/mmax, we can obtain an estimate for the parameter 
 by
expanding the activation probability around the mean steady-state methyl-
ation, ām � ā(M) 	 ā�(M)(m 
 M) 	 . . . Inserting the expansion in Eq. 8 and
neglecting the contributions from small changes in the second and higher

moments of the distribution of methyl groups, we obtain 
 � ā�(M) �
(�a/�m)L�L̄, m�M̄ (see Sect. 2.3 of SI Appendix).

Relaxation Time. For the case without the CheB-P feedback loop, the linear
expansion of Eqs. 1 and 2 yields d	M/dt � 
	A*/�GK, where �GK


1 � kr�r(1 	 �b)/(1 	
�r) 	 kb�b with �r � Kr�r/(Kr 	 A)2, �b � Kb�b/(Kb 	 A*)2 is the inverse relaxation
time for only one modification cycle [e.g., the Goldbeter and Koshland system
(13)]. Using 	A* � 
	M calculated above, we then obtain the relaxation time
�a


1 � 
�GK

1, as well as Eqs. 3 and 6. The relationship between the relaxation time

�a andtheslopeof thekinaseactivationcurve (Eq.5) follows fromconsideringthe
equilibrium relation rA � bA* and its total derivative �GK


1dA* � bA*(d ln �r 
 d ln
�̄bp) (Eq. S30 of SI Appendix). Without the CheB-P feedback loop and at fixed
[CheB], we have d ln �bp � 0 and therefore �GK � (�A*/� ln �r)�bp/(bA*) from which
Eq. 5 follows. In the system with the CheB-P feedback loop, Eq. 5 remains valid,
but now �a


1 � 
(�GK

1 	 b�a), where �a represents the strength of the CheB-P

feedback loop (Eqs. S26 and S33 of SI Appendix). As in Eq. 5, we can calculate how
the relaxation time depends on [CheB] for fixed [CheR]: �a(�b


1) � (�A*/� ln
�b


1)�r/(
bA*�b) (Eq. S34 of SI Appendix). We neglected the receptor complexes
bound to CheR and CheB-P. The full derivations are in Sect. 2.4 of SI Appendix.

Filtering Properties of the Pathway. Eq. 6 represents a negative integral feed-
back system (40). The Fourier transform of Eq. 6 indicates that the frequency
response of the adaptation module resembles that of a high-pass filter with a
cutoff frequency �a


1. Similarly, the response regulator module (Fig. 1A) behaves
like a low-pass filter with cutoff frequency �y


1, where �y is the relaxation time of
the response regulator module (see Sect. 2.6 of SI Appendix). Thus, the chemo-
taxis systemresemblesabandpassfilter.Thevalueof the lowcutoff frequency �a


1

predicted by our model for wild-type level of [CheR] is in agreement with
measurements from tethered cells (25). A recent analysis of the noise-filtering
properties of the chemotaxis system suggested that a lower cutoff frequency �a


1

corresponds to longer time integration of the input signal and therefore better
removal of high-frequency fluctuations (21). However, that study did not take
into account the slow fluctuations in kinase activity due to stochastic fluctuations
in the methylation–demethylation process.

Large-Scale Simulations. Within each digital cell, the chemotaxis network was
simulated by using stochastic methods (16, 38) with rates as in Table S1 of SI
Appendix. Digital cells for each population were first adapted to a constant
external concentration of aspartate of 1 �M for �1,000 s. Then, at time point t �
0, cells were placed at z � 0 in a linear gradient of attractant. This gradient (10
8

M/�m) increases along the z direction (L � 1 �M at z � 0) in a 3D infinite medium.
The trajectories of individual cells were subject to rotational diffusion with
diffusion coefficient Dr � 0.062 rad2/s (41).
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