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1. Inferring cellular response from noise measurements in bacterial 
chemotaxis  
 

In this paper, we identify a general relationship between the fluctuations of 
cellular behavior in single cells and the cellular response to an external stimulus in 
bacterial chemotaxis. 

Signal processing in cells is subject to fluctuations, or noise, arising not only from 
the external environment but also from the intracellular molecular reactions. A series of 
single-cell experiments has demonstrated that molecular noise can sometimes promote 
phenotype variability within an isogenic population of cells (1-6). The significance of 
molecular noise for phenotypic variability has been reported in a number of biological 
processes as diverse as gene expression and signal transduction in prokaryotes and 
eukaryotes (7, 8). A common factor between these noisy biological systems is that 
phenotypic variability emerges from the amplification of random molecular events by a 
sensitive intracellular mechanism (9, 10). It is therefore conceivable that the same 
biological systems that are sensitive to intracellular noise are also sensitive to small extra-
cellular perturbations such as a sudden change in the environment. 

It has been known since the early twentieth century that the study of temporal 
fluctuations in the output signal of a physical system can yield quantitative information 
about the underlying dynamics of the system. The explicit relationship between the noise 
in the output signal of a system that is in equilibrium with its environment and the 
response of that system to small external perturbations was depicted in a general 
mathematical expression called the fluctuation-dissipation relation (11-13).  

Making use of the fluctuation-dissipation relation, we characterize the underlying 
principles governing the relationship between behavioral variability inherent in individual 
non-stimulated cells and the macroscopic cellular response in bacterial chemotaxis 
(Figure S1). In our previous experimental work (1) we focused solely on the 
characterization of the noise in chemotaxis for non-stimulated cells. The present model 
goes beyond this initial study by showing that one can predict the cellular response of 
stimulated cells in measuring the noise in non-stimulated cells.  
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Figure S1: Inferring cellular response from noise measurements in bacterial chemotaxis. The “fluctuation-
dissipation relation” establishes that when a physical system is at equilibrium, the macroscopic response of 
the system to small external perturbations is related to the fluctuation properties of the system at 
equilibrium (11-13). In a biological system, the fluctuation-dissipation relation can be used to infer the 
response of a cell to a small external perturbation, the stimulus  (red), by measuring the fluctuations S

)(tXδ in the cellular behavior of adapted non-stimulated single cells (black). The macroscopic cellular 
response  (blue) is proportional to the product of the external perturbation and the autocorrelation 
of the spontaneous fluctuations. 
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2. Stochastic model of adaptation in bacterial chemotaxis 
 
In the present section we develop a stochastic model of adaptation in bacterial 
chemotaxis. We model the chemotaxis pathway combining the two-state model of 
receptors originally proposed by Asakura and Honda (14) with the exact adaptation 
mechanism proposed by Barkai and Leibler (15). The phosphorylation cascade is similar 
to the one in Sourjik and Berg (16). The resulting kinetic model is essentially the same as 
the kinetic models used by Morton-Firth et al. (17), Melo and Tu (18), Rao et al. (19) and 
Kollman et al. (20). We provide parameter values for our model in Table S1. We also list 
in Table S2 the parameter values from previously published models (17, 19, 20). 
 
2.1 Kinetic model.  

Ligand binding and conformational changes are much faster than the 
(de)methylations reactions and therefore operate at quasi-equilibrium on the time scales 
relevant for the adaptation process. Under these conditions we describe the activity of 
receptor complexes using equilibrium probabilities (15, 18, 19, 21) (Figures 1B and 
S7). This probability depends on the level of methylation of the receptor complexes that 
ranges within , where  is the maximal number of methylation sites. 
The probability   is a function of the ligand concentration, , present in the external 
medium. We assume that receptor complexes with zero methyl groups are always 
inactive while receptor complexes with  methyl groups are always active: 

ma

max,,0 mm K=

ma
maxm

maxm

L

00 =a  
and . For non-saturating amount of attractants (sub-milimolar concentrations of 
aspartate) these boundary conditions are supported by experimental results (16)  and 
ensure exact adaptation (18). At larger stimuli (e.g. concentrations of α-methyl-DL-
aspartate larger than 10 mM) decreases below one with increasing amount of ligand 
(16, 20). A complex cooperative mechanism between receptors governs the sensitivity of 
the chemotaxis receptors to changes in ligand concentration (21-28). To keep our analysis 
both general and independent of a specific model of receptors, we will use the probability 

 directly as the input signal to the adaptation module without specifying dependency 
of on the ligand concentration . However, for the stochastic numerical simulations 
presented in this paper, we specify the relationship between  and  using stochastic 
models of receptors (17) (see SI Sec. 7).  

1
max

≅ma

ma

maxma

ma
L

ma L

We make a distinction between the concentration of free receptor complexes  
and the concentrations of the intermediate compounds, the receptor-CheR  and 
receptor-CheBp . The subscript m  indicates the methylation level of the receptor-
complex. The total concentration of free active and inactive receptor-kinase complexes 
are then  and

mX

rmX

bmX

∑m ma=∗
mXA ∑ −= mm XaA )1

m
( , respectively. We model methylation 

and demethylation of the receptors assuming Michaelis-Menten kinetics for the 
individual methylation-demethylation steps. To ensure exact adaptation of the system we 
use the mechanism proposed by Barkai and Leibler (15) and extended by Morton-Firth et 
al. (17), Mello and Tu (18)and Rao et al. (19): CheR binds only inactive receptor 
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complexes, whereas CheB-P binds only active complexes. For comparison, in SI Sec. 6 
we consider the case where CheR binds receptor complexes irrespective of their activity 
state. The velocity of methylation of receptors with m methyl groups is  and 
the velocity of demethylation is , where the rates of methylation, 

mm Xar )1( −

mm Xab

)/( AKkr rrr += ε , and demethylation, , are defined in Equation 

(1). Here

)/( ∗+ AKbbp= kb bε

rε  and bpε  are the total concentrations of CheR and CheB-P, and are 

effective Michaelis-Menten constants, and , are the corresponding catalytic rates. 
From the Michaelis-Menten approximation we obtain the concentrations of the 
intermediate compounds as function of the concentration of the free receptor complexes: 

rK bK

rk kb

 

mm
r

Xa
k
r )1( −rmX =  (S1)  

 mm
b

Xa
k
b

bmX =  (S2) 

 

Summing up ,  and  for all m we obtain the mass conservation equation (2): mX rmX bmX
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We normalize the concentrations with the total concentration of receptor complexes in 
the system: , mX A , , ∗A rε , bpε , and are expressed as fractions of the total 
number, , of receptor complexes in the system. The total kinase activity of the system, 

, includes the activity of the free receptor complexes as well as the activity of the 
receptor-CheB-P compounds 
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The time evolution of the concentrations of receptor complexes with 
methyl groups (Figure 2B) is governed by the following kinetic equation 

(eq. (5) in the main text): 
max,,0 mm K=

 

 [ ] [ mmmmmmmmm XaXabXaXarX
dt
d

−+−−−= ++−− 1111 )1()1 ](  (S5) 
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The rates r and are defined in Eq. (1). Multiplying Eq. (S5) with m and summing over 
all m’s yields Eq. (1). We model the phosphorylation cascade using mechanisms and 
parameter values similar to those proposed by Sourjik and Berg (29) and used 
subsequently by Rao et al. (19) and Kollman et al. (20):  

b
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d εεε −−−−−= ∗ )()1(  (S8) 

 
bε and yε  are the total concentrations of CheB and CheY, respectively which remain 

constant. The total concentration of CheB-P, bpε , includes the concentration of free 
molecules of CheB-P, , plus the concentration of receptors bound to CheB-P: 

. Thus, we can express the concentrations of free molecules 

of CheB and CheB-P as function of 

pB

)*A/(KAX bbpm
+∗ εbm =∑

bpε :  
 
 bpbB εε −=  (S9) 

 bp
b

b
p AK

K
B ε∗+

=  (S10) 

Inserting equations (S9) and (S10) in the kinetic equation describing the negative 
feedback via phosphorylation of CheB, BAaBddtdB pbpb −=/

pk

∗
totA

, yields equation (S6). 
Similarly, equation (S7) describes the phosphorylation and de-phosphorylation of CheY. 
Phosphate transferase to CheB and CheY are simplified into bimolecular reactions with 
rates  and , respectively (19, 20, 29). De-phosphorylation rates are  and , 
respectively, with the latter including the effect of the phosphatase CheZ.  is the 
concentration of phosphorylated kinases. is the autophosphorylation rate of active 
kinases. Because a kinase must be active in order to bind a phosphate group, the 
autophosphorylation rate of the kinase is proportional to the probability for the kinase to 
be active, i.e. the normalized number of active kinases  (19, 20, 29). 

ba ya bd
A

yd

p

 
2.2 Steady state analysis 

At steady state, equations (S7) and (S8) yield the steady state concentrations of 
CheY-P ( pY ) and CheA-P ( pA )  as function of A , ∗A  and bpε : 
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Replacing pY  and pA  in equation (S6) we obtain an algebraic relation between A , ∗A  
and bpε .  Equations (1) and (S3) provide the other two relations necessary to solve the 

system. Using equation (1) we can eliminate one of the unknown by expressing ∗A  as 
function of A  and bpε : 
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where α  is the ratio of the maximum enzymatic velocities: 
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Thus, we are left with a system of two algebraic equations for the two unknown A  and 

bpε . The first relation is the feedback loop equation (S6), the second relation is the mass 
conservation equation (S3), which after substitution of equation (S13) becomes: 
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Equation (S15) is identical to the equation found by Goldbeter and Koshland for a 
covalent modification system (caption of Figure 3 on p. 6842 of (30)). We solve equation 
(S15) and (S6) with the NSolve[] routine of the software Mathematica 5.2 using the 
parameter values listed in Table S1. We obtain A and bpε  for a range of CheR 

concentrations rε . The other variables, ∗A , Y , pY , pA , r , b , B , pB and the total kinase 

activity of the system ( )bkbAA /1tot += ∗∗  follow easily from equations (1, S9–S13). 
When considering the system without the CheB-P feedback loop, we assume that bpε  is 
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constant and equal to its wild type value at steady state and solve equation (S15) to obtain 
A . Figures 2A and 2B show ∗

totA  as function of rε  calculated without and with the 
CheB-P feedback loop, respectively (parameter values are in Table S1).  

Remarkably, the steady state of the total kinase activity and of the concentration 
of CheY-P are independent from the activation probabilities  and therefore of the 
amount of ligand in the external medium (Equations S6 and S15 are independent from 

). As a consequence the bacterial chemotaxis system exhibits exact adaptation at 
the population level. This result is a direct consequence of the assumption made earlier, 
that CheR only binds inactive receptors and CheB-P only binds active receptors (17-19). 
If instead we assume that CheR binds receptor complexes irrespective of their activity, 
then exact adaptation may be lost whenever the fraction of fully methylated receptors 
becomes important (18).  

)(Lam

)(Lam
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totA  and pY  are independent from the amount of ligand in the external 

medium, the distribution of receptors among methylation levels is not. From equation 
(S5) and (1) we obtain the steady state of :  mX
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and . The steady states of the compounds10 =h rmX and rmX  follow from equations (S1) 
and (S2).  

In previous models of bacterial chemotaxis (17, 19, 20), the probability of 
activation of receptors complexes at steady state increases approximately linearly with 
the number of methyl groups, max/ mmam ≈ , when the external concentration of ligand is 
small (Fig. S7). In this simple case we find that the steady state distribution of free 
receptors among methylation levels becomes approximately binomial 
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with mean )/(max
∗∗ + AAAm and standard deviation )/(max

∗∗ + AAAAm  (see Figure 
S6A below).  

2.3 Perturbation analysis of the kinetic system.  

In this section we present a linear perturbation analysis of the chemotaxis system around 
the steady state, including the feedback loop in CheB-P. We consider only small 
perturbations of the dynamical variables of the system in response to a small sudden 
increase or decrease of ligand concentration in the external medium. Linearization of 
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equations (1) and (S3) around steady state yields the following equations for the time 
evolution of the linear perturbation of  MΔ  and AΔ  as function of ∗ΔA  and bpεΔ : 
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The factors rθ  and bθ  are the fractions of perturbed inactive and active receptors that are 
bound to CheR and CheB-P respectively, while cθ  represents the fraction of CheB-P 
molecules that are bound to active receptors: 
 

 
( )2AK

K

r

rr
r

+
=

ε
θ ,     

( )2∗+
=

AK

K

b

bpb
b

ε
θ ,     and 

bpbb
c k

Ab
AK

A
ε

θ
∗

∗

∗

=
+

= . (S20) 

 
Similarly, the perturbation of the total kinase activity (Eq. S4) gives  
 

  (S21) bpcbtot AA εθθ Δ+Δ+=Δ ∗∗ )1(
 

In equation (S18), the time scale GKτ  is the same as the relaxation time scale of 
Goldbeter and Koshland’s covalent modification system (30), whereas  is the rate of 
change of the methylation level of the system in response to a perturbation in the 
concentration of CheB-P. For the system without the CheB-P feedback loop, 

bg

bpεΔ is zero. 

The linear perturbation of the kinase activity ∗ΔA  contains two terms (Eq. (8)):  
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The first term results from the perturbation in the external concentration of ligand 
whereas the second term describes the change in kinase activity due to perturbations in 
the methylation level of the receptors. To keep our analysis independent from various 
models of receptors, we use directly ∑ Δ=Δ ∗

m mm XaAinput  as the input of the adaptation 
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module without detailing the relationship of maΔ  to changes in ligand concentration. The 
term, , represents the change in kinase activity due to small changes in the 

methylation levels of the receptors at constant external concentration of ligand, 

∗Δ adaptA mXΔ

L . 
Neglecting for simplicity the contributions from the receptor complexes bound to CheR 
and CheB-P, we have 1≅+ ∗AA , 1≅∑m mX , 0≅Δ∑m mX , and we can interpret mXΔ  

as the perturbation of the distribution mX  of methyl groups at steady state (Eq. S16). 
Expanding the activation probability ),()(ma = Lmam =a  around the mean methylation 
at steady state, ...) +()(')( −+= MmMaMama , and inserting in Eq. S22, we obtain 

...! +3/)()('''2/)()('')()(' 321
adapt −Δ+Δ+−Δ=Δ ∗ MmMaMaMmMaA − Mm

where ∑ Δ−=−Δ
m m

kk XMmMm )()(  is the perturbation in the k-th moment of the 
distribution of methyl groups. Keeping only the contribution from the perturbation in the 
mean methylation level ∑ Δ=−Δ= mXMmMΔ and neglecting the contributions 
from small changes in the second and higher moments of the distribution of methyl 
groups, we arrive at the following expression for the perturbation of the mean kinase 
activity: 

m
m

MLmaA Δ≅Δ=Δ ∗ β),(adapt . Here MmLLmaMa ==∂∂==β

X mmΔ

,)/()('  is the gain in 
kinase activity for a small change in methylation level around steady state. This linear 
approximation simplifies the analytical treatment while capturing the basic dependence of 
the kinase activity on methylation level as established by biochemistry data (16, 20, 31). 
In the simple case where  the approximation becomes exact and from Eq. 
S22 we have immediately 

max/ mmam =

adaptA =Δ maxmax // mMmXma
m mm

Δ=Δ=∑∑∗

M
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considering the slow stochastic fluctuations in non-stimulated cell we have: 
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 Eliminating MΔ  from (S18) and performing the linear expansion of equations 
(S6–S8) we obtain the following system of linear equations: 
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The matrix is the relaxation matrix of the system. For the parameter values in Table S1 
the eigenvalues of Γ  are all real and positive, ensuring that the steady state is stable. The 
rate of relaxation of the system towards equilibrium is governed by the smallest 
eigenvalue of , which we calculate numerically using the Eigenvalues[] routine from 
the Mathematica 5.2 software. The inverse of the smallest eigenvalue of  is the 
relaxation time of the system

Γ

Γ
Γ

aτ . We plot aτ  as function of [CheR] and [CheB] in Figure 
2.  
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We can calculate an analytical expression for the relaxation time of the system 
with the CheB-P feedback loop if we further simplify equation (S23). We take into 
account the fact that the methylation-demethylation reactions are much slower than the 
reaction involved in the phosphorylation cascade. Thus, on the long time scales relevant 
for the methylation-demethylation process equations (S6-S8) are at quasi-steady state and 
we can solve them to obtain bpε  as a function of , ∗A bε  and yε  

 

  (S24) ),,( ybbpbp A εεεε ∗=
 

Notice that there is no explicit dependency on rε  in this equation. The dependency of bpε   

on rε  exists only via the dependency of  on ∗A rε . The total concentration of CheB and 
CheY proteins do not vary as a function of time. Thus, the relative change in time of 
phosphorylated CheB, bpεΔ , as a function of the relative change in time of the kinase 

activity  is  ∗ΔA

 

 ∗

∗Δ
=

Δ

A
A

a
bp

bp μ
ε
ε

 (S25) 

 

where ∗∂∂= Abpa ln/lnεμ . In the appendix we derive an approximate expression for 

aμ . Inserting (S25) into the first line of (S23) yields the relaxation time for the adaptation 
system with the CheB-P feedback loop: 
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GKτ  and g are defined in equation (S18). In the next subsection (SI Sec. 2.4) we analyze 
how the relaxation time depends on [CheR] and [CheB]. 

b  

For the system without the CheB-P feedback loop the relaxation of the kinase 
activity decouples from the relaxation of the other variables and the perturbation equation 
for the kinase activity (S23) simply becomes 
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In signal control theory, equation (S27) is equivalent to a negative integral feedback loop 
(32). The relaxation time in this case is βττ /GKa =  (Figure 2C). Multiplying equation 
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(S27) with )1( bθ+ yields equation (4) in the main text. The relaxation time aτ  is a 
function of the steady state activity ∗A  but does not depend explicitly on the activation 
probabilities . Therefore, like the steady state, )(Lam aτ  is independent of the ambient 
concentration of ligand in the external medium. Thus, adaptation should be independent 
from the ambient concentration of ligand. 

 
2.4 Analysis of the relaxation time of the adaptation module 
 

 In this section we analyze how the relaxation time varies as a function of 
the total intracellular concentrations of CheR ( rε ) and CheB ( bε ). If we take the total 
derivative of the conservation of mass equation at steady state (Eq. (2) in main text) we 
obtain (compare with (S19):  
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Similarly, the total derivative of the equilibrium condition ∗= AbAr   (Eq. 1 in main 
text) yields: 
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The total derivative of the CheB-P feedback relation at steady state, equation (S24),  
yields 
 

 bbabp dAdd εμμε lnlnln += ∗  (S31) 
 
where bbpb εεμ ln/ln ∂∂= . Finally, inserting (S31) in (S30) and using (S26) we obtain 
an equation for the total derivative of the steady state kinase activity of free receptor 
complexes 
 

 ( )[ ]{ }bbrrbr
r

a dkkd
Ab
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θ
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ln/11ln
)1(
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+

=
∗

∗  (S32) 
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The relaxation time aτ  is defined in (S26). Equation (S32) tells us how the relaxation 
time depends on the gradient of the kinase activity. For fixed CheB concentration we 
have 
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while for fixed CheR concentration we have 
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The approximations in (S33) and (S34) result after neglecting the small amount of 
receptors bound to CheR and CheB-P. This simplification is valid as long as 

)/( AKK rrrr += εθ  is much smaller than one, which is well satisfied for physiologically 
relevant values of [CheR] ( 03.0=rε  and  is of order 10-1 or smaller; Table 1).  rK

In Figure 2 we plotted the relaxation time as a function of rε  and  for the 
system with and without the CheB-P feedback loop. Here we analyze the main features of 
these curves in the light of equations (S33) and (S34). When plotted as a function of 

1−
bε

rε , 
the derivative in equation (S33) resembles a deactivation curve that is maximum and 
bounded for small values of  rε  and zero for large values of rε . The other factor that 
determines the relaxation time is the inverse rate of demethylation 

)/()(1
bpbb kAKb ε∗− += . From the derivative of 1−b  with respect to rεln , 
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we see that the slope of the relaxation time as function of rε  depends on the strength of 
the CheB-P feedback loop. When the CheB-P feedback loop is weak ( 0≈aμ ) the inverse 
rate of demethylation 1−b  increases monotically from )bbK /( bk ε to )/( bbk)1( bK ε+  as a 
function of rε . Therefore, )( ra ετ  peaks within the transition region of the kinase 
activation curve (Fig. 2C) as expected for a covalent modification cycle with a Hill 
coefficient larger than one (30, 33-35). For a stronger feedback loop, the slope of the 
relaxation time as a function of rε  changes sign whenever 
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At that value of rε  the profile of )( ra ετ  exhibits a local minimum (Fig. 2D). Finally, for 
very strong CheB-P feedback loop ( )1/(1 rKa +>μ ) the derivative of 1−b  is always 
negative and the relaxation time is a decreasing function of rε  everywhere. The profile of 
the noise in kinase activity NAbaa /22 ∗≅ βτσ  is similar to that of aτ  with the exception 
that at low concentration of CheR, the noise becomes zero because of the pre-
factor ∗Ab .  
 The profile of the relaxation time as a function of  for fixed concentration of 
CheR is described by equation (S34). Because 

1−
bε

rε  and bε  are much smaller than one 
(Table 1) we can neglect the receptor complexes bound to CheR and CheB-P in the mass 
conservation and therefore the steady state of the kinase activity ∗A  is a function of 

bpbrr kk εεα /=  only. Thus, bbbpr AAA μεεε /ln/lnln/ ∂lnln/ln ∂−∂=≈∂ ∗∗ −∂

( r

∂  

and the differences between the profiles of 

∗

)ετ  and  only depend on the 
differences between the profiles of 

)1−
b(ετ

)(1
rb ε−  and )1(1−b −

bε . For a fixed value of rε , the 
inverse rate of demethylation 1−b  as a function of  grows monotonically  from zero to 
the maximal value 

1−
bε

)/()1( bbb kK ε+

r

. Thus the profile of the relaxation time as a function 
of  for fixed value of 1−

bε ε  is a peak that decays to zero at both large and small values of 
.  1−

bε
 
2.5 Stochastic fluctuations.  

We calculate the strength of the stochastic fluctuations  within a non-
stimulated cell using the linear noise approximation (36-38).  We first calculate the 
stochastic fluctuations 

∗Aδ

)(tMδ  of the methylation level of the free receptors about the 
steady state M . We assume Poisson statistics for the individual methylation and 
demethylation steps. Thus, the contribution of the methylation  and 
demethylation  reactions to the rate of change of the fluctuations

m
a

m XX m⎯⎯⎯ →−−
−

)1 1

M

r⎯ (
1

1⎯ ab
mX −⎯⎯→ mXm )(tδ  

is mmmm NXar δη/))1(( 11− −− m Xab+ = m mmm NXab δη/2 , where δη  is an 
independent source of white noise and N is the total number of receptor complexes in the 
system. Summing up the contributions from all the methylation and demethylation 
reactions we obtain the following stochastic differential equation for the time evolution 
of Mδ : 
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 (S37) 

 

The last term in equation (S37) is a source term, representing the stochastic fluctuations 
due to the methylation-demethylation reactions. The rest of the equation is exactly the 
same as in equation (S18). Similar to equation (S22) we have the relation 

which together with equation (S37) yields an equation for 

the stochastic fluctuations of the activity of free receptors: 

MMAA input δβδβδδ ≅+= ∗∗

∗Aδ
 

 abpb
GK N

AbgAA
dt
d δηβδεβδ

τ
βδ

∗
∗∗ +−−=

22  (S38) 

 

Equation (2) in the main text follows easily from Eq. (S38) when we neglect the CheB-P 
feedback loop ( ) and take into account the receptor-enzymes compounds. 
Applying, in a similar way, the linear noise approximation to equations (S6-S8) and 
including equation (S38) we obtain the following equation for the matrix C of the 
covariances of the fluctuations within the system (36): 

0=bg

),,,( ppbp AYA δδδεδ ∗

 

 DCCC
dt
d T +Γ−Γ−=  (S39) 

 

where the diffusion matrix for the system is 
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The elements of the matrix  represent the strength of the stochastic fluctuations 
associated with the individual reactions within the system (36-38). N is the total number 
of receptor complexes within the system. At steady state equation (S39) yields the 
Lyapunov matrix equation  

D

 

 DCC T =Γ+Γ  (S41) 
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which follows directly from the fluctuation dissipation theorem (39). We solve (S41) 
using the routine NSolve[] from the Mathematica 5.2 software to obtain the stationary 
covariance matrix C . Finally, the steady state variance of the fluctuations in the total 
kinase activity ∗∗= tottota AA δδσ 2  follows easily from equation (S21): 
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For the system without the CheB-P feedback loop, the strength of the white noise 
associated with the methylation demethylation reactions in equation (2) is aD  where 
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Here GKD  is the strength of the random fluctuations associated with the two enzymatic 
reactions within the covalent modification system studied by Goldbeter and Koshland 
(30, 33).  The variance of the fluctuations in the total kinase activity is then  

 

 22

2 GK
aa

a
D

σβ
τ

σ ==  (S44) 

where  is the variance of the spontaneous fluctuations for the system studied in refs. 
(30, 33): 

2
GKσ

 
2

2 GKGK
GK

Dτ
σ =  (S45) 

 

The equations (S41),  (S44) and (S45) are all directly inferred from the general relation 
between fluctuations and dissipation (11-13). 

 
2.6 Spectral analysis 

 
Taking the Fourier transform of equation (S39) we obtain the power spectrum 

matrix of the fluctuations around the steady state (37, 39): ),,,( ppbp AYA δδδεδ ∗
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 ( ) ( )[ ]11Re2)( −− −Γ+Γ= ωωω iDiS T  (S46) 
 

The power spectrum of the fluctuations in [CheY-P] is the third element along the 
diagonal in the matrix S. We plot the power spectrum of CheY-P in Figure 3. 

It is interesting to calculate the frequency response of the chemotaxis system 
when we neglect the effects of the CheB-P negative feedback loop and assume quasi-
equilibrium between phosphorylated and unphosphorylated kinases. For this simpler 
case, the linear perturbation analysis of the chemotaxis system (equations (3), (4) and 
(A1-A3)) yields the following system of equations for the stochastic fluctuations in total 
kinase activity and in the concentration of CheY-P around steady state: 
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Here  represents the fluctuations in the input of the system to fluctuations in the 
binding-unbinding of external ligand. In Eq (S48) 

∗
inputAδ

yτ is the relaxation time of the 
response regulator module (Fig. 1). Unlike aτ , yτ  is independent from the level of CheR 
and CheB-P within  the cell.  represents the strength of the stochastic fluctuations in 
the phosphorylation cascade, is the gain and 

yD

yg yδη is white noise. Taking the Fourier 

transform of Eqs (S47) and (S48) we obtain the power spectra of  and ∗
totAδ pYδ  

respectively: 
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Eq. (S49) reveals that the adaptation module is a high-pass filter with cutoff frequency 

. The response regulator module (S50) is a low-pass filter with cutoff frequency .  1−
aτ

1−
yτ
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3. Sensitivity of the adaptation module 
 
3.1 Covalent modification cycles (primer) 

 
Covalent modification systems have emerged as an alternative mechanism to 

allostery to amplify signals in biological systems (30, 33-35, 40-42). Recent experiments 
have found sensitive covalent modification mechanisms in the turning on or off of the 
cell cycle in oocytes (43), the conversion of a graded MAPK activation into an all-or-
none switch that governs the development of Drosophila embryonic ventral ectoderm 
(44). Covalent modification systems (30, 42) often consist of two enzymes that reversibly 
modify one substrate between an inactive and an active state (Figure S2). When the 
corresponding Michaelis-Menten constants are smaller than substrate concentration, the 
enzymes operate near saturation and the system departs from hyperbolic (Michaelis-
Menten) sensitivity. The fraction of modified substrate becomes a sigmoidal function of 
the ratio, α , of the maximal enzymatic velocities. The sharpness of the sigmoidal curve 
depends on the ratio of the Michaelis-Menten constants to the concentration of 
substrate . The smaller the values of , the sharper the 
transition between all inactive to all active substrate. For values of 

]/[SubstrateK m ]/[SubstrateK m

α  outside of the 
transition region of the sigmoidal curve, the enzymatic velocities are asymptotically 
insensitive to changes in the substrate. The system is blocked in one state or the other, 
with substrate molecules mostly modified or unmodified. By contrast, when the relative 
velocities of the two converting enzymes (the parameter α )   tune the system within the 
transition region of the sigmoidal curve, the system becomes sensitive to stochastic 
variations in the catalytic rates of substrate modification (30). This regime is 
characterized by large fluctuations in the amount of modified substrate associated with 
large characteristic time scales (33, 34, 38). Within the transition region, the enzymatic 
rates vary rapidly as function of the fractions of unmodified and modified substrates. 
Thus, even though the enzymes are working near saturation (  smaller 
than one), we must retain the full nonlinear form of the Michaelis-Menten rates (in our 
case r and b defined in Eq. (1)). Finally, when the ratio of maximal enzymatic velocities, 

]Substrate/[K m

α , is tuned within the transition region of the sigmoidal curve, the system is sensitive not 
only to small  variations inα  but also to small changes in the relative amount of modified 
and unmodified substrate.  

  

R

Bp

A A*

Input: ΔR

Output

R

Bp

A A*

Input: ΔR

Output  
 
Figure S2. Covalent modification network (30, 33). Unlike in the chemotaxis system (Figure 1A main 
text), the input signal is one of the modifying enzymes. The system works as an amplifier. 
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3.2 The sensitivity of the adaptation module 
 
In SI Sec. 2 above, we showed that at steady state the  concentration of receptor 
complexes A  obeys the equation derived by Goldbeter and Koshland to describe the 
fraction of unmodified proteins as function of the ratio of maximal enzymatic speeds 
(compare Eq. (S15) with the caption of Fig. 3 on page 6842 of (30)). Thus, the structural 
design of the adaptation module in chemotaxis and the architecture of the simpler 
covalent modification cycle are similar. Moreover, the relaxation time aτ  of the 
adaptation module and the variance  of the stochastic fluctuations in kinase activity are 
each proportional to their corresponding values 

2
aσ

GKτ  and  in a covalent modification 
cycle (30). Consequently, the adaptation module in the chemotaxis system (Figure 1) 
should share some of the properties of the futile cycle studied by Goldbeter and Koshland 
(Figure S2).  

2
GKσ

The sensitivity of a covalent modification cycle depends on the ratios of the 
Michaelis-Menten constants to the concentration of substrate. We therefore investigated 
the dynamics of adaptation for different values of the normalized Michaelis-Menten 
constants and between 10-2 and 1. Recent biochemical data (45) provide the 
(normalized) intracellular concentrations of CheR and CheB proteins: 

rK bK
03.0=rε , 

053.0=bε . Taking into account these constraints we find that our model best reproduces 
measurements from single cells and populations when and are of order 10-1: rK bK

132.0=rK

bK

bK

 and  (Table S1). If instead we increase ( ) or 
decrease ( ) the values of the Michaelis-Menten constants we find that we 
cannot simultaneously reproduce the behavioral variability measured (1) in single cell 
measurements of wild type and CheR mutant bacteria (Figures 3 and S3). For  and 

of order 10-2 (5 times smaller than in Table S1), the system is ultra-sensitive. The 
peak of the relaxation time is narrow with a large amplitude (Figure S3A), indicative of a 
very sharp transition between a regime where the kinases are fully inactive to a regime 
where the kinases are fully active (plot not shown). In contrast, for values of  and 

that are of order 1 (10 times larger than in Table S1), the system works in the regime 
of first order kinetics: the activation curve of the kinase activity versus [CheR] is 
hyperbolic and the peaking of the relaxation time disappears (Figure S3A). In this regime 
the power spectrum of the flutuations in CheY-P is nearly insensitive to changes in the 
concentration of CheR, in contradiction with experimental data (1). 

176.0=bK
1≈

210−≈

rK

rK

, br KK
, bKrK

An important feature of the power spectra in Fig S3 ( 132.0=rK ) is the presence 
for wild-type cells of a growing profile with a knee frequency at very long time scales. 
Recent experimental measurements from mutant cells either with deleted signaling 
pathway (ΔcheB, ΔcheZ, ΔcheY, complemented with cheYD13K) or mutants with 
receptors that have fixed intermediate methylation level (strain deleted for cheR, cheB, 
tsr, tar, tap, trg and transformed with Tsr mutant receptors with QQQQE methylation 
sites) do not exhibit large fluctuations at long time scales like in wild type cells with 
comparable CW bias (1). These measurements clearly indicate that the source of the large 
fluctuations is the slow methylation-demetylation process (the faster phosphorylation  
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Figure S3: (A) Relaxation times as a function of [CheR] relative to wild-type level, for values of and 

that are 0.2, 1 and 10 times the values listed in Table S1 and used in the main text. The circles indicate 

factors of two in [CheR]. For =0.13 and 1.3, black corresponds to wild-type. For =0.026, black 

corresponds to the maximum relaxation time. (B) Same power spectra as in Figure 3. Values of and 

that are 1/5, 1 and 10 times those listed in Table 1. The different colors correspond to different 
concentration of CheR increasing in factors of two. The values of [CheR] are the same as for the circles in 
panel A. 

rK

rK

bK

bK

rK rK

cascade gives rise to the knee frequency visible at much shorter time scales) and our 
model provides the corresponding quantitative explanation.  

Recent biochemical data measurements of the concentration of chemotactic 
proteins in E. coli found about 17μM of the abundant receptors Tar and Tsr for 5.3μM of  
kinase CheA (long) (45). This suggests a structural arrangement of approximately three 
receptors per kinase. Measurements of the catalytic activity of CheR and CheB-P in 
receptor monomers gave μM (46) and 1.2≅mrK 8.2≅mbK

Substrate]

μM for CheB-P (47). Thus, 
the ratios of Michaelis-Menten constants to substrate concentration for receptor 
monomers are approximately of order 10-1 ( 0.12/[ ≅mrK for CheR and  
for CheB-P), indicating that the individual methylation-demethylation cycles of the 
receptors are working outside of the region of first-order kinetics (see e.g. Figure 3 on 
page 6842 of (30)). There are no measurements of the Michaelis-Menten constants  
and  in receptor complexes that involve several receptor monomers. One way of 
estimating these values from the current biochemical data is to use the measured 
stochiometry of three receptor dimmers per dimmer of kinase. The affinity of receptor 
complexes to enzymes are therefore about six times those of receptor monomers to 
enzymes.  But the concentration of receptor complexes is also six times smaller than that 
of monomers. Thus, Michaelis-Menten constants and substrate concentration scale 
similarly with respect to the number of receptors within a receptor complex. These 
scaling factors cancel out when we take the ratio of Michaelis-Menten constants to 
substrate concentration. We conclude that the current biochemical data provides a lower 
bound (10-1) for the effective normalized Michaelis-Menten constants used in our model. 
This value is in line with recent models of bacterial chemotaxis (17, 19, 20). In fact, most 

0.17≅

rK

bK
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models assume even smaller values for , making the system even more sensitive and 
noisy (See SI Table S2 in Sec 4 below).  

rK

 

Description Symbol Dimensional Units Normalized   Reference 
CheA concentration  5.3 μM 1 (45) 
CheY concentration 

yε  9.7 μM 1.830 (45) 

CheR concentration 
rε  0.16 μM 0.030 (45) 

CheB concentration 
bε  0.28 μM 0.053 (45) 

Receptor concentration (Tar+Tsr)   17 μM 3.2 (45) 
CheR Michaelis-Menten (methylation of 
a receptor complex) rK  0.39 μM 0.13 this work 

CheB-P Michaelis-Menten 
(demethylation of a receptor complex) bK  0.54 μM 0.18 this work 

CheR catalytic rate 
rk  0.75 s-1 0.75 s-1 this work 

CheB-P catalytic rate 
bk  0.6 s-1 0.6 s-1 this work 

CheA autophosphorylation rate 
pk  23.5 s-1 23.5 s-1 (48), 27 s-1 

CheY phosphorylation rate 
ya  100 μM-1 s-1 530 s-1 (49) 

CheY-P dephosphorylation rate 
yd  30 s-1 30 s-1 (29) 

CheB phosphorylation rate 
ba  10 μM-1 s-1 53 s-1 (49, 50) 

CheB-P dephosphorylation rate 
bd  1 s-1 1-1 (19) 

Cell volume  1.41×10-15 L   
 

max

 
m  4 4  

Table S1: Model parameters. The protein concentrations are from (45). We normalized the concentrations 
with the intracellular concentration of CheA (long). When we consider the model without CheB-P feedback 
loop, the concentration of modifying enzyme CheB-P is constant and equal to its wild type value in the full 
model: 04.0=bpε . We adjusted the catalytic rates of CheR and CheB-P as well as the normalized 
Michaelis-Menten constants to fit the power spectra from single cells measurements in wild type and CheR 
mutants (1) (see the main text). 
 
 
 
4. Alternative models and validation with numerical simulations 
 
4.1 Parameter values from other models 
 
In Table S2 we list the parameter values from published models of chemotaxis (17, 19, 
20). In all these models, the normalized Michaelis-Menten constants for the enzymes 
CheR and CheB-P are smaller than one. Figures S4 show that the adaptation module in 
Bray and collaborators model (17) is working outside of the regime of first-order kinetics. 
We validate our analytical stochastic model of adaptation with stochastic numerical 
simulations of the bacterial chemotaxis system using StochSim (17) (Figure S4C). 
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Morton-Firth et al. (17) 

 

 
Rao et al. (51) 

 
Kolman et al. (20) 

 
Description 
 

 
Symbol 
 

 
Dimensional 

 

 
Normalized

 
Dimensional

 
Normalized

 
Dimensional

 
Normalized     

CheA 
concentration  5 μM 1 5 μM 1 5.3 μM 1 

CheY 
concentration yε  18 μM 3.6 17.9 μM 3.58 9.7 μM 1.83 

CheR 
concentration rε  0.235 μM 0.047 0.3 μM 0.06 0.16 μM 0.03 

CheB 
concentration bε  2.27 μM 0.454 2. μM 0.4 0.28 μM 0.053 

CheR Michaelis-
Menten rK  0.364 μM 0.0728 0.251 μM 0.050 0.099 μM 0.019 

CheB-P 
Michaelis-Menten bK  1.405 μM 0.281 5.5 μM 1.1 2.5 μM 0.47 

CheR catalytic 
rate rk  0.819 s-1 0.819 s-1 0.255 s-1 0.255 s-1 0.39 s-1 0.39 s-1 

CheB-P catalytic 
rate bk  0.155 s-1 0.155 s-1 0.5 s-1 0.5 s-1 6.3 s-1 6.3 s-1 

CheA 
autophosphorylati
on rate 

pk  15.5 s-1 15.5 s-1 50 s-1 50 s-1 50 s-1 50 s-1 

CheY 
phosphorylation 
rate 

ya  3 μM-1 s-1 15 s-1 100 μM-1 s-1 500 s-1 100 μM-1 s-1 530 s-1 

CheY-P 
dephosphorylation 
rate 

yd  14.15 s-1 14.15 s-1 30.1 s-1 30.1 s-1 30.1 s-1 30.1s-1 

CheB 
phosphorylation 
rate 

ba  3 μM-1 s-1 15 s-1 30 μM-1 s-1 150 s-1 3 μM-1 s-1 15.9 s-1 

CheB-P 
dephosphorylation 
rate 

bd  0.35 s-1 0.35 s-1 1 s-1 1 s-1 1 s-1 1 s-1 

Cell volume  1.4×10-15 L  1.4×10-15 L  1.4×10-15 L  
 maxm  4 4 4 4 4 4 

 
Table S2. Parameter values computed from other models of chemotaxis (17, 19, 20).   
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Figure S4. Same as Figures 2 and 3 in the main text but with parameter values as  in (17) (Table S2). (A) 
(black) Total kinase activity  as a function of [CheR] for a fixed wild type level of [CheB]. (grey) same 

without the CheB-P feedback loop. (B) Relaxation time 

∗
totA

aτ  (black) and variance (grey) of the noise 
associated with the total kinase activity. (C) Power spectra of the fluctuations of output signal (CheY-P) 
from non-stimulated cells. One (black), two (grey) and four fold (light grey) wild-type levels of CheR for a 
fixed wild type level of [CheB]. (jagged lines) stochastic numerical simulation of the chemotaxis system. 

2
aσ

 
 
4.2 Coarse-grain models of the methylation demethylation reactions 
 
During the past decade, in vitro experiments have provided many details about the 
complicated process of methylation and demethylation of the receptors. Using purified 
solutions of isolated receptors in the absence of all other chemotaxis components found 
in living cells Wu et al. (52) showed that there exists a tethering site on Tsr and Tar 
receptors that is distinct from the sites of methylation, which helps recruit CheR to the 
receptor. Since the Wu paper, a series of papers have started to analyze in more details 
the complexity of the precise chemical action of CheR during the methylation process 
(53-56). For example, it was recently reported that the tethered CheR can methylate the 
receptors that are in the immediate vicinity in a complicated inter-dimmer process, 
defining an “assistance neighborhood”(57). Undoubtedly, as biochemical experiments 
become more sophisticated (58) and include a larger number of chemotaxis components, 
more complex biochemical mechanisms will emerge.  
 

By contrast, the current models of chemotaxis use simplifying hypotheses that 
coarse-grain the underlying biochemical details to describe the biology of the full 
chemotaxis system obtained from experiments on living cells. Over the last decade, all 
the models  of chemotaxis (including ours) that use the Barkai and Leibler activity-
dependent feedback in the receptor modification system (15) have made the assumption 
that CheR binds the methylation sites of inactive receptors  (17-21, 28, 59). This reaction 
network reproduces both the robust adaptation measured at the population level (60) and 
the nonlinear changes in relaxation time in single cells as a function of [CheR] (1) 
(Figures 2 and 3 in the main text and SI Fig S5C). We obtain similar results using the 
parameter values of the stochastic numerical model developed independently by Morton-
Firth et al. (17) (Figure S4 and Table S2). 
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Figure S5: (A-B) Same as Figure 2 but with CheR always active (methylates both active and inactive 
receptor complexes) and parameters from Table S1. (A) (black) Total kinase activity  as a function of 
[CheR] for a fixed wild type level of [CheB]; (grey) same without the CheB-P feedback loop. (B) 
Relaxation time 

∗
totA

aτ  as a function of [CheR] for a fixed wild type level of [CheB]. (C-E) Power spectrum 
of the spontaneous fluctuations in CheY-P for intracellular concentration of CheR corresponding to ½ 
(green), 1 (black), 2 (yellow) and 4 (red) fold the wild type level. (C) CheR binds the methylation site of 
inactive receptors only; (D) CheR interacts with the methylation sites irrespective of the activity of 
receptors; (E) only the catalytic step of the methylation reaction depends on receptor activity. The 
stochastic simulations (C-E) were performed with the stochastic simulator BioNetGen that uses a standard 
exact Gillespie algorithm to integrate the chemical master equations in time. Reaction rates in Table S1. 
 

Another plausible simplification, also considered in Barkai and Leibler (15), is 
that neither the access to the methylation site nor the actual transfer of methyl group to 
the receptor depend on the activity of receptors. Figures S5A,B&D show that there are no 
qualitative differences between this case and the one presented in the main text. 

The last simplifying possibility is that only the catalytic step of the methylation 
reaction depends on the receptor activity but not the binding of CheR. Under this 
condition, we found that the power spectra of the spontaneous fluctuations of the kinase 
activity are not sensitive to variations of [CheR] (Figure S5E). This behavior contradicts 
the measurements on single living cells in Ref. (1). 

Figures S5C, S5D and S5E illustrate these 3 distinct simplifying assumptions, of 
which only the first two are compatible with the known biology of the chemotaxis 
system.   
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5. Distribution of [CheR] and [CheB] across a cell population.  
 
The distribution of CheY proteins within a population of wild type cells was recently 
measured by (20). We generated the distributions of [CheR] and [CheB] using the Eq. 
(S17) of (20). For the distribution of [CheR] within the population, we used 

( )rrrrrx μλξμλε 22.0+=  where rε  is the average concentration of CheR, λ  is the 
expression level relative to wild-type and rμ  is defined as ]ln2.0exp[ 1rrr q 10ξμ =  with 

chosen such that rq 1=rμ . Similarly, for the distribution of [CheB] we used 

( )bbbbbx μλξμλε 22.0+=  with ]10ln2.0 1bq exp[bb ξμ = . The random variables 1rξ , 

2rξ , 1bξ and 2bξ are normally distributed with mean zero and variance one. For the inset of 
Figure 2D we assumed that cheB was expressed on the chromosome deleted for cheR and 
that cheR was expressed from a low copy plasmid. When cheR and cheB were both 
expressed from the chromosome (Figure S6B and S6C) then rb μμ = (20). 
 
6. Distribution of methyl groups 

 
In the middle of the transition region in Figure 2B, 5.0≅≅ ∗AA  and the mean and 
standard deviations of the distribution (S17) are approximately  and 2/maxm 2/maxm  
respectively (Fig. S6A). Taking into account the receptor complexes bound to CheR and 
CheB-P does not change the distribution significantly because rε  and bpε  are much 
smaller than 1. Including the spontaneous fluctuations in kinase activity does not 
significantly modify the unimodal shape of the steady state distribution of methyl groups 
in a single cell either (stochastic simulations, data not shown). 

Because of the cell-to-cell variability of CheR and CheB concentrations within a 
bacterial population, the sensitivity of the adaptation mechanism to the ratio of the 
methylation and demethylation velocities should have a noticeable effect on the 
distribution of methylation levels within a population of cells. Taking into account the 
fact that the cheR and cheB genes are adjacent on the same operon (see SI Sec. 4), we 
find only small differences between the distribution of methyl groups in a single cell 
(Figure S6A) and the distribution of methyl groups across a population of wild type cells 
(Figure S6B). The resulting distribution is in agreement with earlier measurements (61). 
The fact that there are only small differences between Figures S6A and S6B illustrate the 
known reduction of independent variations between the expression of two adjacent genes 
on a multi-cistronic operon (20). The co-variation of CheR and CheB reduces the 
variations of the ratio α of methylation-demethylation velocities across the population 
(Figure S6C). In contrast, when cheR and cheB are expressed independently, (i.e. cheR on 
a plasmid and cheB constitutively on the chromosome), this robust aspect of the system 
breaks down. In this case, the distribution of methyl groups depends on the independent 
distributions of CheR and CheB (Figure S6D, E). 
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Figure S6. Distribution of the methyl groups. (A) Distribution of methyl groups in the steady state solution 
of the kinetic system for wild type levels of CheR and CheB ( mX  from Eq. S15). (B) Distribution of 
methyl groups across a population of cells when cheR and cheB are co-expressed on the multi-cistronic 
operon meche at wild type levels (See SI Sec. 5 and ref. (20)). (C) Mean (black) plus-minus the standard 
deviation (grey) of the distribution of methylation groups across a population of cells as function of the 
level of expression relative to wild type. cheR and cheB are co-expressed as in B. (D) and (E) Same as (B) 
and (C) but expressing cheR and cheB separately as described in SI Sec. 5. 

 
 
7. Probability of activation of a receptor complex 
 
In the numerical simulations presented in Fig. 4 of the main text we use the same 
definition of the activation probability of a receptor complex  as in (1, 33). On the 
time scales relevant for the methylation and demethylation reactions ligand binding and 
receptor conformation changes operate at quasi-equilibrium. Ligand–receptor 
dissociation constant KD depends on receptor activity but is independent of the 
methylation level. Schematically we have: 

)(Lam

Tarm + L LTarm

Tarm*  + L LTarm*

KD

KD*

pm
Lpm fa

st

fa
st

 
 
where  and  represent inactive and active receptor complexes with m methyl 
groups, and KD* is the dissociation constant for active receptors. pm and pm

L (m=0,…4) 
mTar ∗

mTar
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are the probabilities of activation for free and ligand-bound receptors, respectively. 
Because of the assumption of quasi-equilibrium they satisfy the relation 
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We can express the activation probability of the kinase as function of KD, KD* and 
the 5 probabilities pm:  
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We plot the probabilities  for L=0, 1, 10 and 100 μM aspartate using the same 
dissociation constants and pm values as in (17) (Figure S7A). These are also the parameter 
values that we used for the numerical simulations plotted in Figure 4. Finally, we plotted 
in Figure S7B the probability of activation used by (20) that is based on measurements 
from (16). In all cases, for small concentrations of ligand,  is approximately a 
linear function of m. The approximation is better for the latter. 
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Figure S7: Probability of activation of a Tar receptor complex as function of the methylation level 
of the receptor for increasing values of the external concentration of ligand: L = 0, 1, 10 and 100 μM 
aspartate (black to light grey). (A) Activation probabilities used in Figure 4 of the main text. We used 
similar values as in (17) for the dissociation constants (KD = 1.7 μM and KD* = 12 μM) and for the 
probabilities of activation of a receptor complex free of attractant: p0 = 0, p1 = 0.125, p2 = 0.5, p3 = 0.874 
and p4 = 1.0.  (B) Activation probabilities from Kollman et al. (20) based on measurements from Sourjik 
and Berg (16). For micromolar concentrations of ligand the probability of activation is 
approximately . For (B) the approximation is excellent when L is in the micromolar range. 

)(Lam

4/mam ≅
 
In previous models of bacterial chemotaxis (17, 19, 20), the probability of activation of 
receptors complexes at steady state increases approximately linearly with the number of 
methyl groups, max/ mmam ≈ , when the external concentration of ligand is small (Fig 
S7). Following these models we use max/1 m=β  to plot our analytical solutions in Figs 2 
and 3. In this case the adaptation term in Eq. 8 becomes exactly . We 
validate our analytical results with stochastic simulations that include non-linear 
activation probabilities  (Figures S4C & S7). When considering the cooperative 

maxadapt / mMA Δ=Δ ∗

)(Lam
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interactions between receptors, )(' Ma=β  should be calculated by taking the derivative 
of the activation probability measured by Sourjik and Berg (16, 21, 22, 24-26, 28). 
 
 
8. Large scale simulation of cells with CheB expressed at four times wild 
type level 
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Figure S8: Effect of variations of [CheR] and [CheB] on the chemotactic response of a bacterial population 
of 400 cells. Digital swimming bacteria are exposed to a constant gradient of aspartate 
( M/μm, μM). Percentage of cells above 810/ −=dzdL 1)0( ==zL 1=z  mm as a function of time: 
one (black), two (grey), four (light grey) wild-type [CheR] level. (Dashed line) response of wild type cells 
without gradient. (blue) Response of cells with wild-type level of [CheR] but four times the wild-type level 
of [CheB]. To ensure that this result is not due to [CheY-P] lying outside of the functioning range of the 
motor we adjusted the narrow functioning range of the motor so that the CW bias would remain the same in 
all populations expressing various level of [CheR] (CW bias=0.23).The initial position of the bacteria is 

 mm. 0=z
 
 
9. Appendix 

 

Assuming quasi-equilibrium between the phosphorylated and unphosphorylated 
kinases, equation (S8) becomes  
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The second approximation is valid because << . Linear perturbation of equation 
(A1) then gives: 

Bab Yay
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 (A2) 

Using equation (A1) and (A2), the relaxation system (S23) reduces to 
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Neglecting the small coupling of bpεΔ  with pYΔ  (second row, third column of the matrix 
in A3) we find 
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Finally, assuming quasi-equilibrium for the phosphorylation-dephosphorylation of CheB 
(faster than methylation-demethylation) we obtain 
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