
 

Supplementary Information  

Supplementary legend for Figure 2 

(a) A 170 minute long recording was split in two files. Each file was normalized by its standard deviation 

and their spectra were averaged together and smoothed out with a median filter of rank 6. 

(b) (Black line) Binary time series were divided into 5 min-length-intervals resulting in 222 binary time 

series. The resulting 222 power spectra were averaged together. (grey line) Binary time series were 

recorded from 16 different cells and divided into 5 min-length-intervals. The power spectra of the 45 

resulting binary time series (normalized by their standard deviations) were averaged together. 

(inset) The spectrum was computed from the average of 222 5-minute long binary time series. 

(c) CW and CCW histograms (bin size= 0.1) were respectively normalized by the total number of CW 

and CCW intervals. CW (grey) distribution exhibits an exponential behaviour whereas CCW (black) 

lengths distribution displays a fat tail. 

Supplementary legend for Figure 3 

(a) CheR was expressed from the lac inducible plasmid pUA4 with varying levels of IPTG induction in 

RP4968 deleted strain for cheR1. (black) Average of 29 spectra. Dark grey: Average of 31 spectra. Grey: 

average of 34 spectra. Light grey: average of 40 spectra. For all the curves, after averaging the power 

spectra where smoothed out with a median filter of rank 2. (inset) grey: average of 44 power spectra No 

smoothing. 

(b) Histograms were normalized by the total number of intervals for each [CheR] from the same RP4968 

mutant cells as in panel (a). The CW length intervals exhibited an exponential distribution that did not 

change upon variations of [CheR] (data not shown). 

(c) Fluctuations of the CW bias as a function of time. 700 seconds of data are plotted. The bias was 

defined as the fraction of time the bead span CW within a 30 seconds moving window. The maximum of 

the fluctuations about the mean across the population of 40 wild-type cells ranged about 86% ± 28.  

Supplementary Methods 

RP4968 strain. The relation [CheR] to IPTG was [CheR]/X = {13*[IPTG]/(15µM+[IPTG])}+1, where X 

was the basal level of expression with pUA42. When [IPTG]=0µM and [CheR]/X~1, wild-type behaviour 

was recovered [CheR]/X~1. When [IPTG]=5µM and [CheR]/X ~ 4, the correlated noise was mostly 

eliminated. Finally, when [IPTG]=30µM and [CheR]/X ~ 10, cells exhibited only white noise. In 

agreement with the simulations, an increase of 4 folds wild-type [CheR] level was enough to flatten the 

slope in the power spectrum at time scales longer than 10 seconds.  
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Assay. Bacteria were immobilized onto microscope slides so that some of the flagella were free to rotate. 

Flagella were marked with micro-beads to visualize their rotation with a dark-field illumination3. The 

trajectory of a bead attached to a single flagellum was monitored using a photosensitive quadrant detector 

(Figure 1). A red filter was placed in the light path to protect bacteria from harmful blue radiation. An iris 

was positioned at the back focal plane of a 100x objective lens (UplanFl, 100×/1.30, Olympus, Japan) in 

order to reduce the field of view of the rotating bead. A 50-50% beam splitter split the light between a 

CCD camera (1/3" mid-resolution Exview digital B/W camera, Sony) and a 4-quadrant photomultiplier 

(Hamamatsu Photonics K.K., Electron Tube Center, type: R5900U-01-M4). Plano-convex lenses (focal 

length = 50mm) were used to magnify 5 fold the image of the bead in order to make the detection more 

sensitive to small displacements. The signal from the PMT was acquired with a computer board (PCI-

6024E; 200 kS/s, 12-Bit. National Instrument, Austin, Texas). The length of the time series used to 

compute all the power spectra (except figure 2a) was 5 min.  

Spectral analysis of the chemotaxis network 

Noise analysis of chemical systems can be used to infer time scales involved in underlying molecular 

reactions4. Consider for example a simple isomerization between two species A and B (below) for which 

the relaxation time τ of the isomerization process is τ=1/(k+k’). The time variations of the concentration 

of the species A with two different τ is plotted below (A(t)), left panel).  Although the two time series 

exhibit fluctuations about the mean with similar amplitudes, the one with a shorter τ (grey line) fluctuates 

more rapidly. As a consequence, the fast process (grey) reaches its steady state faster than the slow 

process (black line). Difference in noise between the two processes can be visualized by filtering out high 

frequencies from the signal (middle panel). Filtering was carried out by averaging the time series with a 

moving window of chosen width (the time scale for this width is indicated by the full vertical line in the 

right panel). A more quantitative way to study the noise of a chemical process is to carry out spectral 

analysis of the temporal variations of concentrations. The flat portion of the power spectrum corresponds 

to the time scales for which the process is steady. The bend where the profile turns into a negative slope 

defines the relaxation time (~2πτ) of the system (arrows). At time scales smaller than 2πτ the power 

spectrum is not flat and the process is unsteady.  If the kinetic rates are decreased by a factor of 100, the 

bend is proportionally leftward-shifted (right panel). 
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The chemotaxis system involves more than one single time scale. In our model (figure below), a feedback 

loop controls the phosphorylation of the response regulator CheY. This feedback mechanism depends on 

a pair of cytosolic enzymes, CheR (R) and CheB5 (B), which respectively add and remove (with a time 

scale τm) methyl groups at multiple receptor residues6. The activity of a receptor-associated kinase 

complex E* (E when inactive), which donates (time scale τp) phosphate to CheY, increases with the 

number of methyl groups at these sites (Ei*, with i=0,1,2,3,4). Negative feedback is achieved through a 

parallel phosphotransfer (time scale, τp) from Ei* to CheB (Bp) that in turn enhances the demethylation 

activity7. The activity of the receptor-kinase complex (E*), can vary very rapidly due to conformational 

changes of the receptors (time scale τc). Phosphorylated CheY (Yp) binds preferentially to the 

cytoplasmic base of the motors that switch between two rotational modes (clockwise, CW, and counter-

clockwise, CCW). CheZ, a phosphatase, removes phosphate from CheY-p (timescale τp). When the 

concentration of CheY-P increases, motors spend more time spinning clockwise. The (de)methylations 

are the slowest reactions in the network (τm >> τp, τc). Spectral analysis of the network output (CheYp) 

allows the identification of several characteristic timescales of this signalling pathway. 
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Some details on the numerical simulations: Important features of the numerical model are as follows. The 

Tar-CheW-CheA complex can be in an active or inactive conformation. Auto-phosphorylation of CheA 

occurs only when the receptor complex is in its active conformation. The probability to be in either 

conformation depends on the methylation level of the Tar receptor. The motor was not included in this 

model: the output of the chemotaxis network in our stochastic simulations was the number of CheYp 

proteins as a function of time. This was different from the experimental data for which the network output 

was defined as the switching events from an individual bacterial motor. Power spectra of the output of the 

mutant PS2001 (Fig. 2B), however, indicated that the motor alone did not generate correlated fluctuations 

at frequencies lower than 1 Hz. Comparison of power spectra from our model with the experimental data 

is therefore significant. 

Origin of the correlated noise. To investigate the origin of the correlated noise in the numerical model 

(slope, flats), we computed the power spectrum of the signal at different levels within the pathway. The 

approximate Lorenzian shape of the power spectrum around ν~10-3 Hz results from the fluctuations in the 

mean methylation level of the receptors. The relaxation time τm of the methylation /demethylation of the 

receptors corresponds to the change of slope (τm ~ 1000 secs for wild-type (see also Box 1). It is possible 

that stochastic processes present in a living bacterium, but not incorporated in the numerical model, are 

also contributing to the experimental fluctuations depicted in Figures 2 and 3.  Examples include the 

effects of diffusion on the rate of CheR-catalyzed methylation reactions, and the recently proposed inter-

receptor interactions within the observed clusters of chemotactic receptors. However, regardless of the 

source of these correlated fluctuations, these simulations demonstrate that the downstream chemotaxis 

network allows the propagation of the "colored noise" to produce non-stationary behaviour. Experimental 

and theoretical studies have demonstrated that for reversible bimolecular reactions of the form A+B ↔C 

with [A]<<[B] (and A and C molecules immobile and B molecules mobile), the relaxation kinetics to 

equilibrium follow a power law, rather than simple exponential decay.  

Foraging behaviour. There is a striking similarity between our results, in which power laws arise around 

an optimal value of [CheR], with that of a recently proposed theory for explaining the ubiquity of power 

laws in nature and engineered systems. This theory suggests that power-law distributions emerge from 

engineered or evolved designs of systems with optimal behaviour8,9. It is also common to think that an 

optimized random search of a forager involves a distribution of flight lengths characterized by one length 

scale with a well-defined variance. For example, this would be the case in bacterial chemotaxis if run 

lengths (flight lengths) were to be exponentially distributed. In contrast, it was recently reported10 that the 

best statistical strategy to search efficiently in two dimension for randomly located targets is achieved 

with “an inverse square power-law distribution of flight lengths”10 (Fig. 2c). To illustrate the potential 

advantage of power-law distributions of CCW intervals for foraging behaviour, we simulated 3D 

trajectories using as input the binary time series of switching event measured from wild-type and mutant 

cells. One limitation in relating the data from individual motors into tumbling events of swimming cells is 

that not every switching event translates into a run/tumble transition11.  The statistics of switching, 
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therefore, may not be directly comparable with the run/tumble data.  It may be possible that the 

run/tumble statistics are much closer to exponential even if the distribution of CCW events from 

individual motors exhibits heavy tails or power-law behaviour. Nevertheless, we artificially constructed 

3-dimensional trajectories from the measured binary time series of switching events of individual motors. 

 We found two distinct swimming behaviours. The red trajectory (figure below) corresponds to 398 

seconds of switching events measured from an individual motor in a wild-type cell (we used a subset 

from the data of the Figure 2a with CW bias =0.19, switching frequency =0.58 sec-1).  The blue trajectory 

(figure below) illustrates the motion of a mutant cell lacking the chemotaxis network. The binary time 

series used to produce the “blue” trajectory is a subset of the data set used to plot the grey curve in Figure 

2b (CW bias = 0.20, switching frequency =0.71). As suggested by recent theories on optimal foraging 

behaviour, the power-law distribution produces trajectories that effectively cover several length scales 

whereas exponential distribution leads to trajectories for which the mean length of runs is the only 

explored length scale.  

 

In this figure, lengths are given in micrometers. The binary time series of CW and CCW intervals were 

respectively converted into tumbles and runs. During a run (CCW rotation) the speed was held constant 
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(20 µm/sec) and the direction of motion was allowed to drift with rotational diffusion coefficient = 0.062 

radian2/sec (calculated for a sphere of radius 1µm at 305 ºK in a medium with viscosity 0.027 g cm-1 sec-

1).12 During a tumble (CW rotation), the position of the cell was held constant and a new direction of the 

motion was chosen randomly from one of the straight lines defining a cone with axis of symmetry along 

the original direction of motion and aperture angle α. The angle α was drawn from the distribution 

p(α)=cos(α /2)/2, 0<α<π, ensuring a mean tumble angle of 65º degrees with the standard deviation of  43º 

(Berg & Brown13 measured that the mean tumble angle for wild-type E Coli was 68º with a standard 

deviation of 36º).  
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