
 1 

 Supplementary Information 

 

 Resonant Learning in Scale-free Networks 

 

Samuel Goldmana, Maximino Aldanab,*and Philippe Cluzel* 

 

Department of Molecular and Cellular Biology, Harvard John A. Paulson School of Engineering and 

Applied Sciences, Harvard University, Cambridge, MA 02138, USA.  
aCurrent address: MIT Computational and Systems Biology 
b
 Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos 62210, 

Mexico, And also the complexity address 

*Corresponding authors 

   

  



 2 

 

 

 
Figure S1. Promoter activity time series of central regulatory transcription factors in single cell 

gene expression experiments conducted in Bacillus subtilis. As shown, these transcription factors 

pulse over time, exhibiting an oscillatory behavior. Reproduced from Park et al. Cell Systems 2018. 

 

 

 
Figure S2. In a separate set of experiments conducted in E.coli, the promoter expression of flhD, 

fliA, and fliC, central genes responsible for flagella biosynthesis, also pulse with time at varied 

frequencies.  This suggests evidence for pulsatile expression patterns in existing biological systems. 

Figure reproduced from Kim et al. Science Advances 2020.  
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Figure S3. Dynamical updating rule. We define the network to have a simple thresholded 

activation function to determine the state of the node 𝜎𝑖(𝑡 + 1) as defined in Eq.(1) of the main 

text. For each connection 𝜎𝑖 → 𝜎𝑗, the connection weight 𝑤𝑖𝑗  is randomly chosen with uniform 

probability in the interval [-1,1] and kept fixed throught the temporal dynamics of the network. To 

determine the value 𝜎𝑖(𝑡 + 1) for each node in the network at time 𝑡 + 1, we have to know the 

states at time t, 𝜎𝑗(𝑡), and the weights of all nodes that have an out-going edge to 𝜎𝑖. While simple, 

this updating rule has several advantages over the more classical Kauffman networks, which 

require a truth table of memory 𝑂(𝑁2𝐾) to define the updating rules for each of the 𝑁 genes in the 

network (each with average connectivity 𝐾), allowing us to simulate larger random networks 

efficiently.  
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Figure S4. Threshold networks exhibit a continuous phase transition from ordered to chaotic states. 

As the scale free parameter 𝛾 increases, the average connectivity of the network decreases and the 

network becomes less chaotic, transitioning to an ordered regime around 𝛾 = 1.9. Because the 

threshold activation function makes analytical approximation intractable, we instead evaluate this 

phase diagram empirically through simulations using the Hamming distance as the order parameter: 

 lim
𝑡→∞

ℎ(𝑡) = lim
𝑡→∞

1

𝑛
∑ |𝜎𝑖(𝑡) −  �̃�𝑖 (𝑡)|𝑛

𝑖=1 .  We perturb a fraction, d = 0.05 of the states in the 

network and calculate the difference in trajectories between the perturbed initial condition,  �̃� (𝒕) , 

and the original condition, 𝝈(𝒕) . For each 𝛾 , we average ⟨ℎ(𝑡)⟩  over five different initial 

conditions and twenty different networks. Interestingly, this phase transition is preserved even 

when the hub of the network oscillates at a given frequency. As confirmed by Zañudo et al., these 

Boolean threshold networks are such that ⟨ℎ(𝑡)⟩ approaches 0.2 in the chaotic regime, rather than 

0.5, due to many nodes in the network freezing in either the 0 or 1 state.  We calculate the phase 

transition diagram for these networks when the most connected node (the hub) in the network 

oscillates with different periods to confirm that this does not change the ordered-chaos phase 

transition.  
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Figure S5. The corresponding time series for the frequency domains shown in Figure 1B. Here, 

we color the output states when they are synchronized with the input state.  
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Figure S6. The power spectra of input and network nodes, as shown in Figure 1C, with an input 

period of T=8. To calculate the power spectra for a given node’s time series in the Boolean 

networks, we sample only the parts of their time series in which the node is in a known attractor. 

We extract the states of a given node, 𝜎𝑖(𝑡𝑠𝑡𝑎𝑟𝑡), 𝜎𝑖(𝑡𝑠𝑡𝑎𝑟𝑡 + 1), … , 𝜎𝑖(𝑡𝑒𝑛𝑑) , We use the built-in 

Periodogram function in Scipy’s signal library of Python to estimate the power spectra of these 

signals for comparison. We plot only the dominant frequency.  
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Figure S7: Overlap between new attractors states. When creating new attractor cycles with 

oscillations, we considered how different the newly created attractor cycle states were with respect 

to each other.  It would be uninteresting if oscillating the input node at two separate frequencies 

resulted in two attractors incorporating the same network states.  We tested this by generating 20 

different networks for each gamma value and two oscillation periods, T=4 and T=6. We probed 

the attractor landscape to identify up to 20 attractors and, for each period, found the most similar 

attractor cycle in the landscape corresponding to the other period.  We find that for 𝛾 < 2.3, the 

average overlap between attractors created by a slight difference in input oscillation is low, 

indicating that we generate novel attractor cycles for different input signals.  
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Figure S8. In addition to cataloging similarity between the new attractor states for different periods 

of input oscillation, we compare the new attractor states to attractor states when the input, σinput is 

blocked.  Let AT be the set of all network configurations σi such that σi is part of an attractor cycle 

when σinput oscillates with period T, and let B represent the set of all network configurations σj such 

that σj is part of an attractor cycle when σinput is blocked at OFF or ON. We calculate 1 −

 
|𝐴𝑇∩𝐵 |

|𝐴𝑇|
 averaged over 10 different networks and 1000 initial conditions for each value of 𝛾 to 

identify the attractor landscape.  As the input period increases beyond the relaxation timescale of 

the network, there is always some overlap with the control landscape. 
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Figure S9: Visualizing the attractor landscape. For a sample network with 𝑁 = 1000 and 𝛾 =
1.9, we probed the network’s attractor landscape in the conditions where the input node is set ON 

and then OFF.  Each circle represents a network state, and an arrow indicates a transition based 

upon the updating rule from one state to another. The attractor cycles are shown in blue for this 

network when the input is blocked at either an ON or OFF state.  We oscillated the input at varied 

periods between the ON and OFF states and found new attractor cycles, whose corresponding 

states are colored in red.  We highlight one particular new attractor cycle of an input oscillation of 

T=4. Phase robustness. We note that, unlike normal, fully deterministic Boolean threshold 

networks, a given network state in these networks can be part of multiple basins of attraction in 

our new model.  That is, depending on the phase of the input node, or what part of its switching 

behavior it is in, the network state can converge on different cycles.  
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Figure S10. New attractor cycles are robust. We quantify in 1,000 initial conditions how many 

unique attractor cycles are found.  Again, we average over 10 different networks for each 𝛾.  We 

find that the new attractor cycles constructed from input oscillations in low-𝛾 networks are indeed 

robust, as the attractor landscape is sparse.  Note, for clarity of presentation, we add 0.02 to the 

bars for gamma=1.7 in order to see that these values are non-null. There are indeed some attractors 

discovered. 
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Figure S11. Error in the learning process of the network throughout generations (see also Fig. 

S14). The learning consists in training the network so that the  temporal signal of one node chossen 

randomly, (the output node), matches a predefined function (the target function). The error (𝐸 =
1 − 𝐹𝑖𝑡𝑛𝑒𝑠𝑠) is the difference between the actual temporal signal of the output node and the target 

function (see Fig. S14). It can be obseerved that thoughout generations the error decreases, which 

means that the networks learn to reproduce the target function with increasing precision. We report 

here the results for networks of different  size.  In each case the network was trained to pair three 

different input signals of period T = {6,8,10} to match targets target functions with the same 

periods.  This results demonstrate that networks with 𝑁 = 500 and 𝑁 = 1000 learn essentially at 

the same rate.  
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Figure S12: Testing multiple gamma values. Error in the learning process throughout 

generations for networks with different values of the scale-free exponent 𝛾. The learning process 

is the same as described in the main text and in Figs. S11 and S14. It can be observed that networks 

with lower values of 𝛾   are able to learn significantly faster, (particularly for 𝛾 < 1.9), than 

networks with larger vaues of  𝛾, justifying our choice of 𝛾 = 1.9 in most of our simulations.  
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 Figure S13: Average size of attractor cycles. We catalogue in the probed attractor landscapes the average 

size of each attractor found.  In chaotic networks, the size of the attractors is far larger than in ordered 

networks, becoming unreasonable to simulate for γ < 1.7.  Additionally, we show the average attractor 

size when the hub node is allowed to update naturally as a function of other nodes in the network 

and when the hub input node is set to a constant, blocked value of ON (OFF).  
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Figure 14. Schematic illustration of the network learning process. A periodic input signal with 

period 𝑇 is introduced into the hub of the network (red node). A randomly selected node (other 

than the hube) is chosen to be the output node (green node). During the temporal dynamics of the 

network (Eq.(1) of the main text) the output node will generate an output signal 𝜎𝑜𝑢𝑡(𝑡) that 

depends on the specific details of the networks (connections and weights), and on the form of the 

input function. The output signal  𝜎𝑜𝑢𝑡(𝑡) is then compared with a predefined target function 𝑓(𝑡) 

which can or cannot be periodic (in the illustration, the target function is periodic, but this is not 

necessaryly the case). Both the input and target functions are computed for a period 𝐿 of time. The 

error 𝐸  between 𝜎𝑜𝑢𝑡(𝑡)  and 𝑓(𝑡) is computed as the normalized Hamming distance between 

these two functions averaged over the time interval 𝐿.  
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Figure 15. Schematic illustration of the evolutionary algorithm. Beginning with a population 

of 𝑁𝑝𝑜𝑝 = 50  networks, we generate three mutants for each network. Murations consist in 

randomly rewiring the network conections and/or changing the connections weights. The mutation 

rate is 𝜇 = 0.02 for each node in the network. Then, we calculate the fitness function of each of 

our networks in the population, and select only the best 𝑁𝑝𝑜𝑝 = 50 networks, which are the ones 

that pass to the next generation. This reduces the population to its original size. One full process 

of mutations and selection represents one generation.  
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Figure S16. Limitations on learning. We demonstrate that networks with gamma N = 500, γ = 

1.9 struggle to learn specific attractor cycle behaviors for long time scale input periods. 

Specifically, we assayed learning for input periods, T, and target cycle length, L, T=L={6,30,40}. 

As can be seen, the network is only able to completely learn the short timescale of T = L = 6, 

demonstrating the limitation of resonant learning for targets longer than the relaxation time 

(trelax=20) of the network.  
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Figure S17. Learning target  functions with lengths that differ from the period of the input function. 

Here, we find that the network learns best when the input period and target are of equal duration. 

Interestingly, even having a divisor of the target cycle length does not yield the same benefit in 

learning, as is the case for 𝑇 = 2, 𝐿 = 10).  Learning performance worsens when the target is 

longer than the input period and is not a multiple of it ( 𝑇 = 8, 𝐿 = 10). We have a slight 

improvement in learning performance when the target period is shorter than the input length (𝑇 =
10, 𝐿 = 8).  
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Figure 18.  Learning several patterns. We force the network to learn repeated input functions of 

size 𝑇 = 10 to output functions of the same length 𝐿 = 10.  Because the inputs are arbitrary 

repeated patterns, our fitness function can allow the network to learn different repeated patterns of 

the same length without compromising other repeated pattern inputs. This result shows that the 

network’s ability to learn an arbitrary number of repeated patterns considerably degrades  when 

the number of patterns is larger than 7.  
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Figure S19. Learning multiple target functions of varied length when the input node is under 

the same dynamical rule as the rest of the network.  We repeat the same procedure as for Figure 

3D but allow the input node’s dynamics to follow the same updating rule as the rest of the network 

(Eq.(1) of the main text), giving the network more control over its behavior. We seek to level the 

playing field between the oscillating input case, where the network has a signal from the hub (Figs. 

3C and 3D of the main text). While learning improves, the network cannot learn long targets, 

yielding poor performance when learning multiple attractor functions.  
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Defining an attractor. Since both the network connections 𝜎𝑖 → 𝜎𝑖 and the connection weights 

𝑤𝑖𝑗  are determined when the network is constructed and do not change in time, the network 

dynamics given by Eq. (1) of the main text are deterministic. Additionally, a network with 𝑁 nodes 

has a finite number of 2𝑁 states. The configuration space is finite. Therefore, after some transient 

time,  the network inevitably will fall in a previously visited state. The dynamics will repeat from 

that point on, making the network fall into a periodic pattern of activity. In the first part of our 

results, when discussing the attractors of the network, we include the input node as part of this 

attractor definition. Therefore, if the input node oscillates with an input period 𝑇 = 4, the attractor 

must, by definition, be a multiple of 4.  To allow for more general results, when forcing these 

networks to learn different attractor states, we remove this restriction from the definition of the 

attractor. We generally define the attractor as the expression pattern of all nodes, excluding the 

input node (the hub).   
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