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Genetic cloning 
All clones were derived from Escherichia coli strain MG1655 (The Coli Genetic Stock Center, 

Yale University; CGSC 6300). The carbon source in our experiments is glycerol, under which 

condition the synthesis of flagella is induced. As a consequence, many of the cells in the mother 

machine would swim away from the channels of the mother. To disable the motility of the cells, 

we knocked out in all strains of this study fliC, the gene that encodes for the protein flagellin so 

that flagellar filament cannot be synthetized. 

 

We constructed all strains using the lambda red recombination technique (1, 2), with the helper 

plasmid pSIM5 expressing recombineering functions (3). To construct a strain without an 

antibiotic marker, we used a “scarless” chromosomal engineering technique based on a counter-

selection cassette (4). In the first step, we inserted a linear fragment from ParaB-ccdB cassette 

(gift from J. Mark Kim) into target site using kanamycin for selection. Then this region was 

further replaced by the final construct, using arabinose for selection. The expression of CcdB is 

toxic to E. coli in the absence of CcdA, thus, with the induction by arabinose, the fitness of a cell 

without ParaB-ccdB cassette (e.g., replaced by the final construct) outperforms a cell with the 

cassette. On the other hand, to construct a strain with an antibiotic marker, we directly integrated 

into the target site a linear fragment with both the final construct and the antibiotic marker, using 

this specific antibiotic for selection (kanamycin in our study). Most of the linear fragments were 

derived from plasmids (Table S2). For all strains used in mother machine experiments, the 

temperature-sensitive helper plasmid pSIM5 was removed (3), and their single clones were 

obtained for further experiments. The code and the descriptions of the strains are available in 

Table S1. 

 

We constructed CC-41 from MG1655 by introducing ΔfliC background in a “scarless” way 

(Table S1), which is called the background strain that does not carry any fluorescence reporter 

gene. The background strain is the starting point of all other derived strains.  
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Figure S1. Cloning design. All constructs are integrated into the chromosome rather than a 

plasmid to avoid cell-to-cell copy number variations. The native lacI site is decoupled from the 

DNA looping cassette site that was cloned into the attB site. At the lac site, O3 partially overlaps 

with the 3’ end of lacI that was kept intact after the O3 deletion (Table S3), and no antibiotic 

marker is integrated. At the attB site, lacZ is truncated at ~ 50 base pair after O2, following by 

the fast maturating fluorescence reporter VenusNB (5) that is under the control of Plac and is 

followed by a kanamycin resistant gene (after the rrnB T1 terminator).  

 

In this study, we want to explore the effect of the number of functional operators in the DNA 

looping cassette and of the repressor concentration on repression strength of the lac operon. To 

decouple those two factors, we kept the lacI gene intact at the native site but deleted the looping 

cassette from the native site and cloned it at the attB site (Fig. S1). First, we constructed CC-50 

from CC-41 using a linear fragment from ParaB-ccdB cassette to knock out all genes between lacI 

and lacA at the lac site. Secondly, we inserted lacI with different promoters back to the lac site 

(PlacI for CC-51 that has wild type repressor expression, and PlacIq1 for CC-53 that over-expresses 

LacI at an order of 100 times (6)) but without DNA looping cassette nor no antibiotic marker. In 

a final step, CC-54, CC-58, CC-64 and CC-67 were constructed from CC-51 and CC-53 by 

cloning the DNA looping cassette to the attB site, and those strains consist of high and low LacI 
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repressor expression combined with either the presence or absence of the DNA looping cassette 

(the DNA looping cassette can be disabled by knocking out lacO2 and lacO3; see Table S3). For 

simplicity, we denote CC-54 as the Loops strain, CC-58 as the 100x/Loops strain, CC-64 as the 

No-loop strain, and CC-67 as the 100x/No-loop strain (Table S1), where the number before the 

slash refers to the order of the relative LacI concentration to the wild type. In addition to those 

Loops and No-loop strains, we constructed four One-loop strains (O1-O2 One-loop, O1-O3 One-

loop, 100x/O1-O2 One-loop, 100x/O1-O3 One-loop; see Table S1 and Fig. S13).  

 

Strain Parent strain Genotype Notation used in the text 

CC-41  E. coli, str. MG1655, ΔfliC background 

CC-50 CC-41 (ΔlacI-lacA)::ParaB-ccdB  

CC-51 CC-50 Δ(lacO3-lacA)  

CC-53 CC-50 ΔPlacI::PlacIq1,  Δ(lacO3-lacA)  

CC-54 CC-51 attB::Plac-lacZ(1-430)-SD-mVenusNB Loops 

CC-58 CC-53 attB::Plac-lacZ(1-430)-SD-mVenusNB 100x/Loops 

CC-62 CC-51 attB::Plac-lacZ(1-430)-Δ(lacO2)-SD-mVenusNB O1-O3 One-loop 

CC-63 CC-51 attB::Plac-Δ(lacO3)-lacZ(1-430)-SD-mVenusNB O1-O2 One-loop 

CC-64 CC-51 attB::Plac-Δ(lacO3)-lacZ(1-430)-Δ(lacO2)-SD-mVenusNB No-loop 

CC-65 CC-53 attB::Plac-lacZ(1-430)-Δ(lacO2)-SD-mVenusNB 100x/O1-O3 One-loop 

CC-66 CC-53 attB::Plac-Δ(lacO3)-lacZ(1-430)-SD-mVenusNB 100x/O1-O2 One-loop 

CC-67 CC-53 attB::Plac-Δ(lacO3)-lacZ(1-430)-Δ(lacO2)-SD-mVenusNB 100x/No-loop 

Table S1. E .coli strains in this study. The source of all strains is from this work. 

 
Plasmid Genotype/Description Antibiotics Source 

pCC-12 sc101,  attB1-Plac-lacZ(1-430)-SD-mVenusNB-attB2 Kan This work 

pCC-16 sc101,  attB1-Plac-Δ(lacO3)-lacZ(1-430)-Δ(lacO2)-SD-

mVenusNB-attB2 

Kan This work 

Table S2. Plasmids in this study.  

 
 

Operator Sequence 

lacO2 GGTTGTTACTCGCTCACATTT 



 6 

ΔlacO2 GGCTGCTATAGCTTGACGTTT 

lacO3 GGCAGTGAGCGCAACGCAATT 

ΔlacO3 GGCAGTGATGAAGCTTGTCAG 

Table S3. Operator and their sequences (7).  

 
Site Primer Sequence 

lac 
mCC-1 AGCAAAACAGATCGAAGAAGGG 

mCC-9 GGTCAAAGAGGCATGATGCGAC 

attB 
mCC-46 AAGACCGCAGAGCAGAGAAC 

mCC-47 TGTTGTCACCTGCTACGACC 

fliC 
mCC-98 GTTGCCGTCAGTCTCAGTTAATCAGGTTAC 

mCC-99 ACCCGACTCCCAGCGATGAAATAC 

Table S4. Primers used in this study. 

 

We performed Sanger sequencing to verify these strains (Table S4). We used mCC-1 and mCC-9 

for checking the lac site, mCC-46 and mCC-47 for the attB site, and mCC-98 and mCC-99 for 

the fliC site, verify all news strains with sequencing. Sequencing primers are properly chosen to 

make sure that all regions related to experiments were examined. 

 

Experimental setup 

M9 media was prepared with M9 minimal salt (BD, Difco, catalog number: 248510), 

complemented with 0.1 mM CaCl2 (MilliporeSigma, catalog number: EM1.02378.0500), 2mM 

MgSO4 (Sigma-Aldrich, catalog number: M1880), 1µg/ml Thiamine (Sigma-Aldrich, catalog 

number: T4625), 0.85g/L Pluronic F-108 (Sigma-Aldrich, catalog number: 542342), 0.50% 

casamino acids (BD, Bacto, catalog number: 223050), and 0.40% Glycerol (VWR, BDH, catalog 

number: BDH1172).  

 

We used Zeiss Axiovert 200M microscope, with all the settings be identical as in (5). In 

preparation for a typical experiment, cells were grown in M9 media for overnight at 30°C (no 

antibiotics for the background strain, and 25 ug/ml kanamycin for Loops, One-loop and No-loop 

strains). At the day of the experiment, the cell culture was centrifuged and loaded into the inlets 
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of microfluidics device by pipetting. Syringes with M9 media (no kanamycin) were connected to 

the inlets (BD, 60ml), and the outlets were connected to an empty beaker. The initial flow rate 

was 35 µl/min (~ 1 hour) for cleaning the inlets and outlets and the flow rate was adjusted to 7 

µl/min during the experiment. All experiments were performed at 30°C. In this study, one 

mother machine microfluidics device (8, 9) has four independent quadrants, each has a series of 

growth channels allowing the observation of the old-pole mother cell and its progeny. This 

device allows the simultaneous observation of up to four different conditions, each for one 

quadrant. In each experiment, we included the background strain as a control, and we filled the 

other quadrants with Loops, One-loop or No-loop strains. Phase contrast and fluorescence 

images were obtained for each field of view every 5 minutes. After loading the microfluidic 

device with bacteria, the first five hours of data is discarded to ensure that the cells under 

observation are in the exponential phase, and subsequent duration of the recorded data is ≥ 40 

hours. The number of lineages of a Loops, One-loop or No-loop strain included in the analysis is 

≥ 50, and the number of lineages of the background strain in the same experiment is ≥ 20. 

 

Image processing 

We analyzed our microscopy images based on the software of molyso, which includes image 

registration, cell segmentation and lineage tracking (6). Here, we only tracked the old-pole 

mother cells, which always stayed at the end of growth channels. We modified the codes of 

molyso to enable manual corrections of the results of cell segmentation. Cell divisions were 

determined automatically based on cell length, complemented with manual check.  

 

We calculated the total fluorescence per cell as the sum of the fluorescent intensities of all pixels 

belonging to a cell, subtracted with local background level. We also analyzed a cell without a 

fluorescent reporter and calculated its total auto-fluorescence.  

 

The definition of repression 

In our experiments, we monitor the spontaneous leakiness of the promoter, as a measure for the 

repression level of the lac promoter in the presence or absence of DNA looping. Our definition 

of repression differs from that of Müller-Hill et al. in Refs. (10, 11) that includes the fully 

induced promoter, however, they both yield the same qualitative pictures. 
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Characterizing background fluorescence signals 

With the tight regulation of the DNA looping, most cells contain only few copies of the protein 

under the control of the lac promoter (12). As expected, from our experiments, the distributions 

of total fluorescence per cell of the Loops and No-loop strains show a low mean in such a way 

that they are not clearly separated from the distributions of the total auto-fluorescence per cell of 

the background strain (Fig. S2). This result indicates that, we need to explicitly consider the 

contribution of the auto-fluorescence to the total measured fluorescence signal in order to 

identify which part of the measured fluorescent signal is actually directly associated with bursts 

of VenusNB synthesis and not random fluctuations of auto-fluorescence.  

 

The total auto-fluorescence per cell of the background strain is used for the inference of 

promoter activity for the Loops and No-loop strains. To determine if the auto-fluorescence 

signals from different experiments are consistent, we compared the distributions of the auto-

fluorescence levels from two repeated experiments. Although existing small differences, they 

overlap well with each other (Fig. S3). We also found that the total auto-fluorescence is 

proportional to the cell size (Fig. S3).  
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Figure S2. Distributions of the total fluorescence per cell from the background strain and 

the four strains (Loops and No-loop) described in Table S1. The red dots represent the 

distribution of the total auto-fluorescence per cell from the background strain CC-41 (table S1), 

and the blue dots represent the distribution of total fluorescence per cell for each of the four 

strains (Loops and No-loop) expressing Venus as described in table S1. The distribution from the 

Loops strain is almost identical to that of 100x/No-loop and also similar to 100x/Loop, but is 

different from that of the No-loop strain. 

 

 

Figure S3. Characterization of the auto-fluorescence signal from the background strain. 

(left panel) The distributions of the total auto-fluorescence per cell, and (middle panel) the cell 

size distributions of background strain at different timepoints in two independent experiments. 

(right panel) Scatter plot of cell size versus total fluorescence per cell. 

 

Signal-to-noise ratio and the amplitude of pulses of the Loops and No-loop strains 

To determine to which extend we can distinguish the “true” signal from the background, we 

calculated the signal-to-noise ratio  

𝑆𝑁𝑅 =
𝜇!" − 𝜇#$%&'()*+,

𝜎#$%&'()*+,
(1) 

where 𝜇!"	is the mean fluorescent signal when the promoter is inferred as ON (see the later part 

of the Supplementary Information), and 𝜇#$%&'()*+, and 𝜎#$%&'()*+, is the mean and the 

standard deviation of the auto-fluorescence calculated from the background strain that is grown 

within the same microfluidic chip as the Loops or No-loop strains. A Savitzky-Golay filtering 

(13) is applied to the fluorescence signals of both background and experimental strains. We also 
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estimated the standard derivation for signal-to-noise ratio by applying Eq. (1) to all fluorescent 

signals when the promoter is ON. The signal-to-noise ratio is 6.0 ± 5.2 for the Loops strain, 

5.9 ± 5.2 for the 100x/Loops strain, 6.0 ± 4.7 for the 100x/No-loop strain, and 18.0 ± 10.5 for 

the No-loop strain. Interestingly, the signal-to-noise ratio for the first three strains are similar.  

 

 
Figure S4. Estimation of pulses amplitude. To determine to which extend the “true” signal is 

separated from the background (shown in Fig. S3), we directly estimated the distributions of the 

pulse amplitude from fluorescence time series. In line with the observations from Fig. S2, the 

distribution of the Loops strain is similar to those of the 100x/Loops and 100x/No-loop strains, 

but different from that of the No-loop strain. 

 

For the same purpose, we also make a rough estimate of the amplitude of the pulses observed 

from the Loops and No-loop strains. The estimate of pulse amplitudes is using only fluorescence 

signal within a single cell cycle (thus a pulse lasting more than one cell cycle will not be counted 

in this estimation). If the maximum fluorescence signal within a cell cycle is larger than a 
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threshold (three sigma above mean background signals), and the difference between the 

maximum and the average fluorescence signals within the same cell cycle is larger than a second 

threshold (three times of background signals standard derivation), the difference between the 

maximum and the minimum fluorescence signals is considered as a candidate for estimating the 

pulses. We find that, the estimated amplitude of pulses from the loops strain is quite similar to 

those of the 100x/Loops and 100x/No-loop strains (Fig. S4). On the other hand, the estimated 

amplitude of the No-loop strain is larger than that of the Loops strain, but their pulses peaks are 

still of the same order (~ several hundred a.u.; Fig. S4). However, the ratio between the mean 

fluorescence level of the No-loop strain and the Loops strain is 3.97. Together, these 

observations suggest that the expression difference between the Loops strain and the No-loop 

strain is not solely caused by the amplitude of expression, the frequency of expression of the 

pulses may also play a role, since frequent protein expression can lead to higher fluorescence 

signal if the fluorescent proteins being produced are not diluted out when the second pulse 

happened. 

 

A probabilistic inference algorithm 

Intuitively, a 'hard threshold' method could be used for detecting the events of promoter 

expression. To define the state ‘ON’ of a promoter, one needs to calculate the change of the 

fluorescent signal between two frames, and compare with a predefined threshold.  

 

In simulation, the 'hard threshold' method caused many false positive and false negative 

detections. We developed a probabilistic method for inferring the promoter activity, which 

outperforms the 'hard threshold' method in the regime of weak signals. This probabilistic method 

infers the promoter activity considering not only the cell-size dependent auto-fluorescence but 

also fluorescence signals of adjacent timepoints. We compute the maximum likelihood 

estimation to find out a set of non-negative promoter activity to minimize the weighted squared 

error between the observed signal and the sum of the background signal (that is a function of the 

cell size) and the underlying ‘real’ signal (a function of the promoter activity and the cell 

division).  
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Likelihood function. Let’s denote observed(t) the total fluorescence per cell at time t for a lineage 

observed in an experiment. We use ratio(t) to denote the fraction of proteins that go to the next 

timepoint t+1 that is a function of cell division, 

𝑟𝑎𝑡𝑖𝑜(𝑡) = <1.0,																if	cell	does	not	divide	at	time	t,<1.0,													otherwise,																																							 (2) 

leakage(t) to denote the promoter activity at time t that is the latent variable, which is always a 

non-negative number, and real(t) is used to denote the underlying ‘real’ signal as a function of 

leakage(t) and ratio(t), 

𝑟𝑒𝑎𝑙(𝑡) = 𝑟𝑒𝑎𝑙(𝑡 − 1) ∗ 𝑟𝑎𝑡𝑖𝑜(𝑡 − 1) + 𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑡), (3) 

for 𝑡 ≥ 2. Since ratio(t) is given by the data, the information carried by real(t) and leakage(t) are 

equivalent. We further assume a normal distribution for the observation, i.e., 

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡)~𝑁[𝑟𝑒𝑎𝑙(𝑡) + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑡), 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡)_, (4) 

where background(t) and variance(t) are the mean and variance of the auto-fluorescence per cell 

at time t, both of which can be directly calculated from the cell size(t) with the coefficients 

estimated from the total auto-fluorescence per cell of the background strain. The likelihood 

function could be written as 

				ln 𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑|𝑟𝑒𝑎𝑙)	

= bln𝑃[𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡)c𝑟𝑒𝑎𝑙(𝑡)_
-

	

= −
1
2bdln 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡) +

e𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡) − [𝑟𝑒𝑎𝑙(𝑡) + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑡)_f
.

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡) g
-

+ constant	term, 

by dropping off the first term in the parentheses that only depends on cell size, we have 	

−bd
e𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡) − [𝑟𝑒𝑎𝑙(𝑡) + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑡)_f

.

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡) g .
-

 

Thus, to maximize likelihood is equivalent to minimize the target function 

bd
e𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡) − [𝑟𝑒𝑎𝑙(𝑡) + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑡)_f

.

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡)
g

-

, (5)

subject	to	𝑟𝑒𝑎𝑙(𝑡) ≥ 0,
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a weighted sum of the difference between observed signal and ‘real’ signal plus background over 

all timepoints. 

 

Maximum likelihood solution: the estimation of leakage(t). The maximum likelihood solution 

could be obtained by  

𝜕	𝐸𝑞. (5)
𝜕	𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜏)

= 0. (6) 

The only term in Eq. (5) that depends on 𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜏) is real(t) for timepoints 𝑡 ≥ 𝜏. As shown in 

Eq. (3), the dependence of real(t) on 𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜏) has direction in time. Let’s denote the 

timepoints of cell divisions 𝜔/, 𝜔.… ,𝜔0 between t and 𝜏, where m is short for 𝑚(𝑡, 𝜏). Thus, 

for real(t) with 𝑡 ≥ 𝜏, 

𝑟𝑒𝑎𝑙(𝑡) = 𝑟𝑒𝑎𝑙(𝑡 − 1) ∗ 𝑟𝑎𝑡𝑖𝑜(𝑡 − 1) + 𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑡)	

																= 𝑟𝑒𝑎𝑙(𝜔0 + 1) + b 𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜔)
-

121!3/

	

																= 𝑟𝑎𝑡𝑖𝑜(𝜔0) × 𝑟𝑒𝑎𝑙(𝜔04/ + 1) + 𝑟𝑎𝑡𝑖𝑜(𝜔0) × b 𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜔)
1!

121!"#3/

+ b 𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜔)
-

121!3/

	

= 𝑟𝑎𝑡𝑖𝑜(𝜔04/) × 𝑟𝑎𝑡𝑖𝑜(𝜔0) × 𝑟𝑒𝑎𝑙(𝜔04. + 1)			

+ 𝑟𝑎𝑡𝑖𝑜(𝜔04/) × 𝑟𝑎𝑡𝑖𝑜(𝜔0) × b 𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜔)
1!"#

121!"$3/

										

+ 𝑟𝑎𝑡𝑖𝑜(𝜔0) × b 𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜔)
1!

121!"#3/

+ b 𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜔)
-

121!3/

	

=s𝑟𝑎𝑡𝑖𝑜(𝜔5)
0

52/

× 𝑟𝑒𝑎𝑙(𝜏) + 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑡, 𝜏)																															(7) 

with  

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑡, 𝜏) = b s 𝑟𝑎𝑡𝑖𝑜(𝜔5)
0

52046

b 𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜔)

1!"%

121!"%"#3/

04/

627

+ b 𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜔)
-

121!3/

, (8) 
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 by denoting 𝜔7 = 	𝜏. We further denote 𝑡8+, as the last timepoint. Thus, starting from Eq. (6),  

𝜕	𝐸𝑞. (5)
𝜕	𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜏) =

𝜕 ∑ d
e𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡) − [𝑟𝑒𝑎𝑙(𝑡) + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑡)_f

.

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡) g-&'(
-29

𝜕	𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜏) 	

= b

𝜕d
e𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡) − [𝑟𝑒𝑎𝑙(𝑡) + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑡)_f

.

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡) g

𝜕	𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜏)

-&'(

-29

	

= −2b
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡) − [𝑟𝑒𝑎𝑙(𝑡) + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑡)_

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡)

-&'(

-29

𝜕	𝑟𝑒𝑎𝑙(𝑡)
𝜕	𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜏)	

= −2b
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡) − [𝑟𝑒𝑎𝑙(𝑡) + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑡)_

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡)

-&'(

-29

s 𝑟𝑎𝑡𝑖𝑜(𝜔5)
0(-,9)

52/

							(9)	

= 0. 

By inserting Eq. (7) into Eq. (9), we have 

b
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡) − e∏ 𝑟𝑎𝑡𝑖𝑜(𝜔5)

0(-,9)
52/ × 𝑟𝑒𝑎𝑙(𝜏) + 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑡, 𝜏) + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑡)f

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡)

-&'(

-29

× s 𝑟𝑎𝑡𝑖𝑜(𝜔5)
0(-,9)

52/

= 0	

b
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡) − [𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑡, 𝜏) + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑡)_

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡) × s 𝑟𝑎𝑡𝑖𝑜(𝜔5)
0(-,9)

52/

-&'(

-29

=b
𝑟𝑒𝑎𝑙(𝜏)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡)

-&'(

-29

× ds 𝑟𝑎𝑡𝑖𝑜(𝜔5)
0(-,9)

52/

g

.

 

we have 

𝑟𝑒𝑎𝑙(𝜏) =
∑ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡) − [𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑡, 𝜏) + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑡)_

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡) × ∏ 𝑟𝑎𝑡𝑖𝑜(𝜔5)
0(-,9)
52/

-&'(
-29

∑ 1
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡)

-&'(
-29 × e∏ 𝑟𝑎𝑡𝑖𝑜(𝜔5)

0(-,9)
52/ f

. , (10)	
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the physical meaning of which is a weighted sum of the difference between observation and 

background plus the effective leakage estimated in current iteration over timepoints after 𝜏. 

𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜏) could be easily calculated by combining Eq. (3) and Eq. (10): 

𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜏) = 𝑟𝑒𝑎𝑙(𝜏) − 𝑟𝑒𝑎𝑙(𝜏 − 1) ∗ 𝑟𝑎𝑡𝑖𝑜(𝜏 − 1), (11) 

for 𝜏 ≥ 2, and 𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝜏) = 𝑟𝑒𝑎𝑙(𝜏) for 𝜏 = 1, which is the leakage before observation. 

 

Estimation of background(t) and variance(t). From the data of the background strain, we find 

that both the mean and the standard derivation of the total auto-fluorescence per cell are linearly 

proportional to the cell size. We can directly estimate the dependence of background(t) to cell 

size(t) using a linear model. On the other hand, we estimate variance(t) from cell size(t) based on 

the squared error between the observed signal and the background signal estimated using the 

linear model,  

𝑠𝑞𝑢𝑎𝑟𝑒𝑑	𝑒𝑟𝑟𝑜𝑟(𝑡) = [𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡) − 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(𝑡)_
.
. (12) 

The squared error could be decomposed into two parts: the cell size-dependent variance with 

coefficients 𝜌%8==	?5@8	?A*$(8, and 𝜌%8==	?5@8, and the part of variance that is directly from the 

observation with coefficient 𝜌)#?8(B$-5)+. We have 

e𝑐𝑒𝑙𝑙	𝑠𝚤𝑧𝑒.zzzzzzzzzzzzzzzzzzzz⃑ , 𝑐𝑒𝑙𝑙	𝑠𝚤𝑧𝑒zzzzzzzzzzzzzzzzz⃑ , 1z⃗ f }
𝜌%8==	?5@8	?A*$(8, 	

𝜌%8==	?5@8
	𝜌)#?8(B$-5)+

~ = 𝑠𝑞𝑢𝑎𝑟𝑒𝑑	𝑒𝑟𝑟𝑜𝑟zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz⃑ . (13) 

Thus, the least squared solution for those coefficients could be calculated by 

}
𝜌%8==	?5@8	?A*$(8, 	

𝜌%8==	?5@8
	𝜌)#?8(B$-5)+

~ = 𝑠𝑞𝑢𝑎𝑟𝑒𝑑	𝑒𝑟𝑟𝑜𝑟	zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz⃑ × 	e𝑐𝑒𝑙𝑙	𝑠𝚤𝑧𝑒.zzzzzzzzzzzzzzzzzzzz⃑ , 𝑐𝑒𝑙𝑙	𝑠𝚤𝑧𝑒zzzzzzzzzzzzzzzzz⃑ , 1z⃗ f
4/
. (14) 

 

Protein partition: the estimation of ratio(t) for a cell division. The fraction of the ‘real’ signal 

that a daughter cell inherits from the mother cell is directly estimated by the ratio between their 

total fluorescence per cell, i.e., if a cell divides at timepoint t-1, we have 

𝑟𝑎𝑡𝑖𝑜(𝑡) =
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡 − 1)
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡)

, (15) 

with a lower boundary set to be 0.01 and an upper boundary set to be 0.99. 

 

Parameter updating rule to find out the local maxima of likelihood. The overall pipeline for the 

algorithm is available at Fig. S5a. To infer promoter activity from the time series data, we run ten 
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rounds of fitting and select the one with largest likelihood score as the final result. In each round 

of the fitting, we obtain the initial values of the promoter activity without the nonnegative 

restriction, and update their values with the nonnegative restriction (see Nonnegative restriction 

of promoter activity in Supplementary Information). Based on the promoter activity estimated 

with the nonnegative restriction, we further update their values in a 'diffusion' way. For each 

pulse, we checked if the likelihood could be improved by 'diffusing' a part of the promoter 

activity to its adjacent timepoints. These steps are repeated five times in each round of fitting, 

and the updated parameters from the precedent run is used as the initial parameters for the 

subsequent run. The pseudocode for finding out the maximum likelihood is available in Fig. S5b. 
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Figure S5. Pseudo-code for our pulse detection algorithm. (a) Overall pipeline for the 

algorithm. (b) Pseudo-code for inferring promoter activity. The function random_shuffle returns 

a permutation for the input number array in which elements are randomly rearranged. (c) 

Pseudo-code for updating leakage(t). leakage(t), observed(t), real(t), background(t), and 

variance(t) are defined in the ‘a probabilistic inference algorithm’ section of the supplementary 
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information. background_std(t) is the squared root of the variance(t). 

𝜇(background_derivative) and 𝜎(background_derivative) are the mean and the standard 

derivation of the first-order derivative of the total auto-fluorescence per cell calculated from the 

background strain. The function max returns the maximum value of the numbers.  

 

Nonnegative restriction of promoter activity. Parameter updating to search the local maxima with 

the constraint of non-negative promoter activity is challenging. To solve this problem, we update 

the parameters in two rounds. In the first round, we update the parameters without the 

nonnegative restriction, so that the sum of the background signal and the ‘real’ signal would 

match the observed signal at all timepoints for a lineage. In the second round, the nonnegative 

promoter activity constraint is introduced using the parameters estimated from the first round as 

the starting point of iteration. Detailly, with or without the nonnegative restriction, the first step 

is to update the promoter activity of the first timepoint in order to estimate the amount of 

fluorescence signals for proteins being produced before the start of the observation. In the second 

step, we update the promoter activity for each of the remaining timepoints in a randomized order 

to prevent visiting the same local likelihood maxima in different realizations.  

 

Thresholds for parameter updating at each timepoint. For the parameter updating at each 

timepoint, we accept the update of the promoter activity only if it passes a given threshold; 

otherwise, this promoter activity will be set to be zero. The threshold we set would not only 

depends on the total fluorescence per cell at the current timepoint, but also the temporal first-

order derivative of the total fluorescence per cell (Fig. S5c).  

 

Depending on the levels of total fluorescence per cell and burst size, we use two sets of 

thresholds for strains in our study. For the Loops, 100x/Loops, 100x/O1-O3 One-loop, O1-O2 

One-loop, 100x/O1-O2 One-loop, and 100x/No-loop strains, 𝜌?5'+$= = 2.5, and 𝜌,8(5B$-5B8 = 1.5, 

which is a stringent threshold. For the O1-O3 One-loop and No-loop strains, a loose threshold is 

used. We set 𝜌?5'+$= = 2.5, and there is no threshold in fluorescence derivative. 

  

Data preprocessing. We apply a Savitzky-Golay filtering for data smoothing within each cell 

cycle for the input time series data before inference. 
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Statistics of expression dynamics. The intervals of promoter activity corresponding to ON and 

OFF states that could be calculated from the inferred promoter activity using this probabilistic 

method. An interval ‘ON’ is defined as the duration of contiguous timepoints with nonzero 

promoter activity, and an interval of ‘OFF’ activity is the duration between two ON intervals. An 

ON/OFF interval at the beginning/end of the time series whose duration cannot be accurately 

determined, however, will be ignored. In our experiments, the duration of an ON interval is 

usually shorter than one cell cycle. In power spectrum analyses (Figs. S6-S9 (a), lower panels), 

the power of the fluorescence signals of the background strain in the high frequency domain (< a 

cell cycle) is higher than that of a Loops or No-loop strain, making it unrealistic to reliably detect 

ON intervals. The burst size of a pulse associated with an ON interval, which is defined as the 

integral of the promoter activity, is a more robust measurement. Thus, we will use OFF intervals 

and burst size to characterize the promoter activity. We also found that a longer ON interval 

sometimes will be detected as two or more shorter ON intervals with small gaps. Thus, for our 

probabilistic method, ‘ON’ intervals with gaps smaller or equal to 15 minutes, as well as the 

associated burst size, will be merged, which would largely improve the performance of 

simulation mentioned in the later part of the Supplementary Information. 

 

Simulation of artificial time series to evaluate error rates in pulse detection using our 

probabilistic method 

Experimental fluorescence time series from the background strain is used as the starting point for 

the simulations. There are several controlling parameters that are used to adjust the statistics of 

the simulated time series so that they resemble the time series observed in our experiments: the 

parameters called OFF interval and ON interval control the duration of an OFF or ON interval, 

and the parameter called burst size controls the burst size of a pulse, which is randomly 

partitioned into the promoter activity of each timepoint of an ON interval. Motivated by Fig. 3 in 

the main text, we have an additional parameter controlling the ratio of the mean promoter 

activity between the first and the second half of a cell cycle. The promoter activity at the second 

half of a cell cycle would be scaled with that ratio to represent the correlation between promoter 

activity and cell cycle. Each controlling parameter could be a constant number or random 

numbers drawn from a distribution. Once the promoter activity of all timepoints is generated, it 
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is added to a real time series associated with the auto-fluorescence of the background strain. A 

daughter cell would inherit only a fraction of the added signals from the mother cell. 

 

The performance of the algorithm depends on the values chosen for the controlling parameters of 

the pulses. To evaluate the error rate in pulse detection, it is crucial to identify a proper 

parameter set for which not only the distribution of the total fluorescence per cell and the 

distribution of the fluorescence derivative of the simulations and experiments match, but also 

their power spectra. 

 

The search of the parameters is performed manually. The parameters of the Loops strain and the 

100x/No-loop strain are the same (i.e., they share the same set of functions for generating 

random variables), the duration of an OFF interval is on average 220 minutes, with a burst size 

that is 2.71 fold the mean fluorescence signals of the background and with a duration distributed 

around 25 min (Figs. S6 and S10). The parameters for the 100x/Loops strain are identical to that 

of the Loops strain but an OFF interval, however, lasts on average 395 minutes (Fig. S7). On the 

other hand, for the parameters of the No-loop strain, the duration of an OFF interval is 

distributed around 35 minutes, the burst size is 3.69 fold of the mean fluorescence signals of the 

background and the ON duration is distributed around 38 minutes (Fig. S8). For all Loops and 

No-loop strains, the ratio between the first and the second half of the cell cycle is set to be 1.7 

(motivated by the ratio from the experiments; see Fig. S14). 

 

As shown in Figs. S6-S10, for the simulations of the Loops and No-loop strains, overall the 

distributions of the detected OFF intervals agree with the real distributions. The upper 

boundaries of OFF intervals in inference also agree with the real situation, with occasional false 

positives being introduced at relatively low frequency. Our pulse detection algorithm can also 

overall accurately detect the distributions of the burst size for the pulses except those with very 

small burst size (Figs. S6-S10). 
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Figure S6. Parameters and simulation tests for the Loops strain. (a) The goal is to simulate 

time series that have similar distribution of the total fluorescence per cell, distribution of 

fluorescence derivative, and power spectrum as for the time series measured directly from 

growing bacteria. In our simulation, the OFF interval and ON interval is a multiple of 5 minute 

dwell time, and the burst size is measured in term of number of folds of the mean fluorescence of 

the background strain. We chose for the parameters of the Loops strain as follow. OFF interval: 

geornd(1/45.0); ON interval: 3 + geornd(1/3.0); burst size: max(2.0, geornd(1/2.75)) 
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(mean=2.71, determined by numeric). The function max returns the maximum value of the 

numbers, function round returns the nearest integer to a float number, and function geornd gives 

a random number from the geometric distribution (p.m.f. 𝑓(𝑥) = 𝑝(1 − 𝑝)C , 𝑥 = 0,1,2, . ..), 

respectively. (b) The correlation between promoter activity and cell cycle inferred by the 

algorithm (blue line) matches that from the input (the red line represents the input leakage, and 

the purple line is the input leakage after applying a Savitzky-Golay filter). The fluorescence 

derivative that is directly calculated from the data, however, overestimate the level of the 

promoter activity. An error bar represents the coefficient of variation. (c) The upper panel gives 

the distributions of input and detected OFF interval duration, and the lower panel shows the 

distributions of input and detected burst size. Y-axis gives the number of OFF intervals or pulses 

with a burst size per lineage for a given bin. The error bar of each bin is the standard derivation 

generated using the bootstrapping method. f.p. (i.e. false positive) means that there is actually no 

OFF interval or burst size in the associated bin and the inference yields a false positive, and f.n. 

(i.e. false negative) means that there is actually an OFF interval or a pulse with a burst size but it 

has not been detected. 
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Figure S7. Parameters and simulation tests for the 100x/Loops strain. The parameters of 

100x/Loops: OFF interval: geornd(1/80.0); ON interval: 3 + geornd(1/3.0)); burst size: max(2.0, 

geornd(1/2.75)). The meaning of the symbols of this figure is identical to that of Fig. S6.   

  



 24 

 

 

Figure S8. Parameters and simulation tests for the No-loop strain. The parameters of the No-

loop strain: OFF interval: geornd(1/8.0); ON interval: 4 + geornd(1/4.5); burst size: max(2.0, 

geornd(1/4.0)) (mean=3.69, determined by numeric). The meaning of the symbols of this figure 

is identical to that of Fig. S6.   
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Figure S9. Parameters and simulation tests for the 100x/No-loop strain. The parameters of 

100x/No-loop is identical to those of the Loops strain, but the experimental fluorescence time 

series of the background strain in simulation is from the same experiment of 100x/No-loop. The 

meaning of the symbols of this figure is identical to that of Fig. S6.   
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‘Scaling’ test for simulated time series 

We performed a ‘scaling’ test to check whether long OFF intervals observed in the time series of 

the Loops strain, the 100x/Loops strain and the 100x/No-loop strain could be merely explained 

by the difference in amplitude comparing to the No-loop strain, as the pulse amplitude underlies 

the detectability of the OFF intervals. For example, extremely weak amplitude could lead to false 

positive and yield longer OFF intervals. 

 

In our simulations, the burst size of the pulses for the Loops strain, the 100x/Loops strain and the 

100x/No-loop strains is 2.71 fold the mean fluorescence signals of the background strain, but for 

the No-loop strain is 3.69 fold. We scaled the amplitude of the Loops, 100x/Loops and 100x/No-

loop strains to that of the No-loop strain, and vice versa and check the effect of these different 

scaling on the detection of the longest OFF intervals. The detected OFF interval distributions of 

the ‘scaling’ test for all strains are close to the real distributions (Fig. S10). Therefore, the 

presence of long OFF intervals observed for the three strains (Loops, 100x/Loops and 100x/No-

loop) cannot be explained by error in pulses detection due to the weak amplitude of the pulses.  
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Figure S10. ‘Scaling’ test for the simulation mentioned in Fig. S7. For each simulated time 

series generated in Figs. S6-S9, we performed a ‘scaling’ test. This test consisted in scaling the 

magnitude of burst size with a certain factor. Specifically, the burst size of the Loops, 

100x/Loops and 100x/No-loop strains is scaled with a factor of 1.36, and that of the No-loop 

strain is scaled with 0.74, so that the burst size of the Loops, 100x/Loops and 100x/No-loop 

strains are scaled to that of the No-loop strain, and vice versa. The meaning of the symbols of 

this figure is identical to that of Fig. S6c.   

 

Inference using a ‘hard threshold’ method 

we compared the ‘hard threshold’ method to our probabilistic pulse detection algorithm, using 

the same simulated data set as in Figs. S6-S9. The optimal ‘hard threshold’ is selected to 

minimize the average Kullback–Leibler divergence between the input distributions of OFF 

intervals and those of the detected OFF intervals using various combinations of pulse size and 

frequency. Similar to the probabilistic detection algorithm, a Savitzky-Golay filtering is used in 

the data pre-processing for the ‘hard threshold’ method. Overall, the ‘hard threshold’ method 

yields larger differences between the input and detected distributions for not only OFF intervals 

but also burst size comparing to those the probabilistic algorithm (Figs. S6-S9 vs. Figs. S11-

S12).  
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Figure S11. Simulated tests for OFF intervals detection using ‘hard threshold’ method. In 

order to compare the ‘hard threshold’ method with our pulse detection algorithm, we use the 
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former to detect the OFF intervals using the same simulated data set to Figs. S6-S9. The 

distributions of input and actual OFF intervals are given for simulation of each strain. The 

meaning of the symbols of this figure is identical to that of Fig. S6c.   
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Figure S12. Simulated tests for burst size detection using hard threshold method. The 

distributions of input and detected burst size of pulses associated with Fig. S11 are given. The 
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meaning of the symbols of this figure is identical to that of Fig. S6c.   

	

OFF interval distributions for One-loop strains	

 

Fig. S13. OFF intervals for One-loop strains follow exponential distributions. The 

cumulative distributions (𝑃(𝑋 ≥ 𝑥)) for four One-loop strains were compared with those of the 

Loops and No-loop strains. For each panel, the OFF intervals were normalized by dividing the 

maximum value from magenta dots. Normalization factors: upper panels (1440 min), and lower 

panels (2520 min). Slopes before normalization: O1-O3 One-loop (-0.01162 𝑚𝑖𝑛4/), O1-O2 One-

loop (-0.00478 𝑚𝑖𝑛4/), 100x/O1-O3 One-loop (-0.00534 𝑚𝑖𝑛4/), and 100x/O1-O2 One-loop (-

0.00355 𝑚𝑖𝑛4/).  
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Modeling the DNA looping 

Description of the system. The lac repressor, with two DNA binding domains, can bind two 

operators simultaneously by looping the intervening DNA. We consider the simplest realistic 

model of the lac operon that considers DNA looping, including the main operator O1 and an 

auxiliary operator, referred to as Oa. The repressor’s binding to O1 prevents transcription by the 

RNA polymerase irrespective of its binding to Oa, which does not prevent transcription. 

  

The canonical description considers that there is a set of transcriptional states 𝑠 and that mRNA, 

𝑚, is produced at a rate 𝑔? for each transcription state (14). We consider explicitly 5 

transcriptional states, which are labeled as follows: 

 

State Description 

1 O1 and Oa free 

2 O1 free and Oa bound to the repressor 

3 O1 bound to the repressor and Oa free 

4 O1 and Oa bound to a repressor looping DNA 

5 O1 and Oa each bound to a repressor 

 

We use a vectorial representation of the system in the state space. The transcription rates 𝑔? are 

expressed as the components of the vector    

𝐠 ≡ (𝑘- 𝑘- 0 0 0)D , 

which specifies transcription taking place at a rate 𝑘- only when the main operator O1 is free. 

Analogously, transitions between states result from the binding and unbinding of the repressor. 

The transition rates 𝑘?,?)	 from the state 𝑠 to the state 𝑠E are specified through the elements of the 

matrix   

𝐤 ≡

⎝

⎜⎜
⎛

0 𝑛F𝑘on 𝑛F𝑘on 0 0
𝑘off-Oa 0 0 𝑘loop (𝑛F − 1)𝑘on
𝑘off-O1 0 0 𝑘loop (𝑛F − 1)𝑘on
0 𝑘off-O1 𝑘off-Oa 0 0
0 𝑘off-O1 𝑘off-Oa 0 0 ⎠

⎟⎟
⎞
, 

where 𝑘)+ is the association rate of the repressor for an operator; 𝑘off-O1 and 𝑘off-Oa are the 

dissociation rates of the repressor from O1 and Oa, respectively; 𝑘loop is the rate of loop formation 
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when the repressor is bound to one operator; and 𝑛F is the number of repressors. This 

description, developed originally in Ref. (15), has been shown to accurately describe the lac 

operon under an exhaustive range of experimental conditions (16, 17), with  1.7-fold accuracy 

over a 10,000-fold variation of the expression level. 

  

The time evolution of the probability 𝑃? of the state 𝑠 is given by 
𝑑𝑃?
𝑑𝑡 =b [	𝑘?),?𝑃?) − 𝑘?,?)	𝑃?]

?)
, 

which takes into account the transitions between transcriptional states. 

 

The steady-state expression of the probability 𝑃? is obtained by solving 0 = ∑ [𝑘?E	,?𝑃?E −?E

𝑘?,?E𝑃?], which follows straightforwardly from the preceding equation. The solution, using the 

statistical weights 𝑍?, is expressed in vector form as 

𝐏GG = 𝐙/‖𝐙‖/, 

where ‖𝒁‖/ is the partition function expressed using the one norm.  

 

To obtain compact expressions, we express the dissociation and the looping rates in terms of the 

repressor-operator association constants, 𝐾H/ and 𝐾HI, and looping local concentration, 𝑛J, as 

𝑘off-O1 = 𝑘on/𝐾H/, 𝑘off-A = 𝑘on/𝐾HI, and 𝑘loop = 𝑛J𝑘on. In terms of these parameters, the 

statistical weights are 

𝒁 ≡ (1 𝑛F𝐾HI 𝑛F𝐾H/ 𝑛F𝑛J𝐾HI𝐾H/ 𝑛F(𝑛F − 1)𝐾HI𝐾H/)D . 

The association constants and looping local concentration are related to the free energies of 

binding to O1, Δ𝐹H/, and Oa, Δ𝐹HI, and of looping, Δ𝐹J, as 𝐾H/ = 𝑒4KL+#, 𝐾HI = 𝑒4KL+,, and 

𝑛J = 𝑒4KL-, respectively, which use the thermal energy (𝑘M𝑇) as energy units. 

 

Parameter values. We use the number of molecules, abbreviated molec, as the units of 

substance; 1 molecule/cell, equivalent to 1.5 nM for an E. coli cell, as the units of concentration; 

and minutes, abbreviated min, as the units of time. 
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The association rate constant for the repressor tetramer binding to an operator at 30°C was set to 

𝑘NO = 0.28	molec4/min4/, consistently with the upper and lower bounds established in Fig. 2 

of Ref. (7) for the repressor dimer at 37°C and 25°C, respectively. 

 

The repressor-operator association constants and the looping concentration were obtained from 

the free energies inferred in Refs. (16, 17) as 𝐾H/ = 2.76	molec4/, 𝐾HI = 0.32	molec4/, and 

𝑛J = 1080	molec. These values lead to a single O1 operator repression level, defined as the 

maximum transcription over the actual transcription and computed as 𝐿 = 𝑘-/(𝐏GG ⋅ 𝐠), of 𝐿 =

27, to a full system repression level of 𝐿 = 2291, and to the main operator O1 being 10 times 

stronger than the auxiliary operator O2, consistently with the experimental observations of Ref. 

(10), with similar growing conditions as used here but with a slightly different temperature of 

32°C. 

 

These values of 𝑘NO and 𝐾H/ lead to 𝑘off-O1 = 0.10	min4/, corresponding to an average 

occupancy time of O1 by the repressor of 9.7 min, consistently with the upper and lower bounds 

established at 37°C and 25°C, respectively, in Fig. 2 of Ref. (7).  

 

The transcription rate was set to 𝑘- = 20 molec ⋅ min4/ as reported in Ref. (18). 

 

Burst size and OFF interval definition. We define the OFF interval as the time between the first 

binding to O1 after transcription and the subsequent transcriptional event. Therefore, the OFF 

interval can include multiple rounds of binding and unbinding to O1. Correspondingly, the ON 

interval is defined as the time between the first transcriptional event after unbinding from O1 and 

the subsequent binding to O1. In this way, we can unambiguously define the burst size as the 

number of transcripts produced during the ON interval.  

 

To obtain analytical results, we consider a reduced description. Explicitly, we aggregate the 

states without potential for transcription into the bound state, denoted by B, which includes the 

configurations with the repressor bound to O1; namely, one repressor bound to O1 and the 

auxiliary operator free, a repressor bound simultaneously to O1 and the auxiliary operator by 

looping the intervening DNA, and one repressor bound to O1 and another one bound to the 
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auxiliary operator. Its probability is given by 𝑃M = 𝑃P + 𝑃Q + 𝑃R. Analogously, we aggregate the 

states with potential for transcription into the free O1 state, denoted by E, which includes the 

configurations with the repressor not bound to O1; namely, O1 free and the auxiliary operator 

occupied, and both operators free. Its probability is given by 𝑃S = 𝑃/ + 𝑃..  

 

OFF interval statistics. To account for transcriptional events in the reduced description, we 

introduce a transcription start state, denoted by TS, so that a transcript is produced when the 

system reaches this state. The resulting transitions between the reduced states are described by  

𝐵
&.
⇄
&/
𝐸

&0→ 𝑇𝑆, 

where 𝑘#	is the effective binding rate for the repressors to O1, 𝑘* gives the unbinding rate for a 

repressor from O1, and 𝑘- is the effective transcription rate. 

 

When the system reaches the state E, there is a probability 

𝛼 =
𝑘#

𝑘# + 𝑘-
 

of returning to the bound state. The probability of 𝑙 unbinding events before transcription occurs 

is 

𝑃= = 𝛼=4/(1 − 𝛼). 

 

Considering that 𝑘* ≪ 𝑘#, as implied by the physical parameters of the system, the timing at 

which 𝑙 unbinding events happen is given by the composition of 𝑙 exponential decays, described 

by the Erlang distribution, 

𝑤-|= =
(𝑘*𝑡)=4/

(𝑙 − 1)! 𝑘*𝑒
4&.- , 

which results in a distribution of waiting times between transcriptional events (OFF intervals) 

given by 

𝑤- =b 𝑤-|=𝑃=
=

=b
(𝛼𝑘*𝑡)=4/

(𝑙 − 1)! 𝑘*𝑒
4&.-

=
(1 − 𝛼) = 𝑒4(/4U)&.-𝑘*(1 − 𝛼) 

The average duration of the OFF interval is 

𝜏HVV = £ 𝑡𝑤-𝑑𝑡
W

7
=
1
𝑘*
¤1 +

𝑘#
𝑘-
¥ 
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More generally, the distribution of OFF intervals can be computed as the survival probability 

distribution of the system being in the states B and E before a transcriptional event occurs (19, 

20): 

𝑤- = −
𝑑
𝑑𝑡
(𝑃M + 𝑃S). 

 

The dynamics of the corresponding probabilities is given by  
𝑑
𝑑𝑡 𝑃M = −𝑘)+𝑛J𝑃/ + 𝑘)+(𝑛F + 𝑛J)𝑃S − 𝑘NXX4H/𝑃M 

𝑑
𝑑𝑡 𝑃S = 𝑘)+𝑛J𝑃/ − [𝑘)+(𝑛F + 𝑛J) + 𝑘-]𝑃S + 𝑘NXX4H/𝑃M 

which forms a closed set of equations when the contribution of 𝑃/ is negligible compared to that 

of 𝑃.. In that case, we obtain the explicit values 𝑘* = 𝑘NXX4H/ and 𝑘# = 𝑘)+(𝑛F + 𝑛J). Using the 

initial conditions 𝑃M(0) = 1 and 𝑃S(0) = 0, the resulting distribution of OFF intervals is given 

by  

𝑤- =

𝑘*𝑘-𝑒
4/.(&.3&/3&0)Y/3Z/4

Q&.&0
(&.3&/3&0)$

[-

¦𝑒
(&.3&/3&0)Z/4

Q&.&0
(&.3&/3&0)$

	-
− 1§

¨(𝑘* + 𝑘# + 𝑘-). − 4𝑘*𝑘-
 

Since 𝑘* ≪ 𝑘# + 𝑘-, by expanding the square root, we obtain 

𝑤- ≃
𝑘*𝑘-
𝑘# + 𝑘-

𝑒4
&.&0
&/3&0

- 

which coincides with the expression obtained previously. 

 

Burst size statistics. To account for multiple transcriptional events in the reduced description, we 

consider that, after reaching the transcription start state TS and producing a transcript, the system 

returns instantaneously to the free O1 state E. The resulting transitions between the reduced states 

are described by  

𝐵
&/
←𝐸

&0
⇄
W
𝑇𝑆. 

 

The probability of making 𝑟 E-TS transitions before O1 is occupied is 
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𝑃( = (1 − 𝛼)(4/𝛼 

and the average number of transcripts per burst  

⟨𝑟⟩ =b 𝑟𝑃(
(

=
1
𝛼 = 1 +

𝑘-
𝑘#
. 

 

Stochastic simulations. We performed stochastic simulations of the Master equation that 

describes the dynamics of the system under steady conditions following the approach of Ref. 

(14). Explicitly, the time evolution of the joint probability 𝑃(𝑝,𝑚, 𝑠) of the number 𝑝 of 

proteins, the number 𝑚 of mRNA molecules, and the system state 𝑠 is governed by the Master 

equation  
𝑑𝑃(𝑝,𝑚, 𝑠)

𝑑𝑡 =b [	𝑘?),?𝑃(𝑝,𝑚, 𝑠E) − 𝑘?,?)	𝑃(𝑝,𝑚, 𝑠)]
?)

+ 𝑔?[𝑃(𝑝,𝑚 − 1, 𝑠) − 𝑃(𝑝,𝑚, 𝑠)]

+ 𝜆0[(𝑚 + 1)𝑃(𝑝,𝑚 + 1, 𝑠) − 𝑚𝑃(𝑝,𝑚, 𝑠)]

+ 𝑘\𝑚[𝑃(𝑝 − 1,𝑚, 𝑠) − 𝑃(𝑝,𝑚, 𝑠)] + 𝜆\[(𝑝 + 1)𝑃(𝑝 + 1,𝑚, 𝑠) − 𝑝𝑃(𝑝,𝑚, 𝑠)], 

which takes into account the transitions between transcriptional states, mRNA production, 

mRNA degradation, protein production, and protein dilution. Here, 𝜆0 is the mRNA degradation 

rate, 𝑘\ is the translation rate, and 𝜆\ is the dilution rate, which equals the growth rate. As 

discussed in the “Description of the system” section, 𝑘?,?) is the transition rate between the 

transcriptional states of the operon, and 𝑔? is the transcription rate in the state 𝑠. 

 

The ON and OFF intervals are computed at discrete times 𝑡5 = 𝑖Δ𝑡 equally spaced by Δ𝑡 as 

𝑝(𝑡53/) − 𝑝(𝑡5) > 0 and 𝑝(𝑡53/) − 𝑝(𝑡5) ≤ 0, respectively. The burst size is computed as the 

protein produced during an ON interval. 

 

Computational results. The table below shows the average OFF interval duration, 𝜏HVV, and burst 

size, ⟨𝑟⟩, computed analytically and from stochastic simulations for systems with the WT number 

of repressors (𝑛F = 10), with 100 times the WT number of repressors (𝑛F = 1000), with DNA 

looping, and without DNA looping (𝐾HI = 0 and 𝑛J = 0): 

 

Looping Repressors 

𝜏HVV (min) 

analytical 

𝜏HVV (min) 

 simulation 

⟨𝑟⟩  

analytical 

⟨𝑟⟩  

simulation 
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Yes WT 162 160 (154) 1.1 1.5 (1.4) 

Yes 100×WT 299 310 (305) 1.0 1.1 (1.1) 

No WT 11.1 22.5 (13.3) 7.9 23.3 (13.0) 

No 100×WT 149 159 (153) 1.1 1.2 (1.1) 

 

The parameter values for the analytical computations are described in the “Parameter values” 

section. Additional parameters in the simulations include 𝜆0 = 0.33	min4/, 𝜆\ =

0.0059	min4/, and  𝑘\ = 26.7	min4/. Averages from simulations were computed over 1.9×106 

min runs after discarding the initial 3.9×105 min. Simulation results were computed by sampling 

the time series every 5 min (results without parentheses) or 1 min (results within parentheses). 

The average burst size from the stochastic simulations in the previous table has been normalized 

by the average protein produced by a single transcript.  

 

Simulation with cell division 

 

Fig. S14. Statistics of OFF intervals in simulation with cell division. We calculated the 

cumulative distributions of OFF intervals for simulations with cell division by forcing the 

repressor to unbind from the operators periodically. The insets give the simulations without cell 

division, which are identical to that in Fig. 2c. Normalization factors: Loops strains with cell 

division (515 min), Loops strains without cell division (1685 min), No-loop strains with cell 

division (160 min), and No-loop strains without cell division (190 min). 
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To assess the effects of cell division on the repression of the lac promoter, we performed 

stochastic simulations that differ from those in the insets of Fig. 2c by forced periodical 

unbinding events of the repressor from the operators (Fig. S14). For the Loops strain, the 

statistics of the OFF intervals in the presence of cell division deviates from that of an exponential 

distribution. The mean interval duration is half shorter in the presence than in the absence of 

division. Furthermore, the OFF intervals in the presence of cell division are sensitive to repressor 

concentration changes and shows a four-fold reduction. On the other hand, the effect of cell 

division on the No-loop strains is very mild.  
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