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Effects of topology on network evolution

PANOS OIKONOMOU* AND PHILIPPE CLUZEL*
The James Franck Institute and Institute for Biophysical Dynamics, Department of Physics, University of Chicago, Gordon Center for Integrative Science, 929 E. 57th St, Chicago,
Illinois 60637, USA
*e-mail: poikonom@uchicago.edu; cluzel@uchicago.edu

Published online: 23 July 2006; doi:10.1038/nphys359

The ubiquity of scale-free topology in nature raises the
question of whether this particular network design confers
an evolutionary advantage1. A series of studies has identified

key principles controlling the growth and the dynamics of
scale-free networks2–4. Here, we use neuron-based networks of
boolean components as a framework for modelling a large
class of dynamical behaviours in both natural and artificial
systems5–7. Applying a training algorithm, we characterize
how networks with distinct topologies evolve towards a pre-
established target function through a process of random
mutations and selection8–10. We find that homogeneous random
networks and scale-free networks exhibit drastically different
evolutionary paths. Whereas homogeneous random networks
accumulate neutral mutations and evolve by sparse punctuated
steps11,12, scale-free networks evolve rapidly and continuously.
Remarkably, this latter property is robust to variations of the
degree exponent. In contrast, homogeneous random networks
require a specific tuning of their connectivity to optimize their
ability to evolve. These results highlight an organizing principle
that governs the evolution of complex networks and that can
improve the design of engineered systems.

In recent years, studies of the architecture of large complex
networks have unveiled a topology, known as scale-free, in which
the connectivity between elements is power-law distributed3. In
biology, the intricate interactions of genes and proteins can be
viewed as neuron-based networks that control biological signals13.
It is also common to model large technological and social
systems using similar neuronal networks. For example, electronic
devices that carry out computational tasks are built using large
networks of interconnected logic gates, whereas collective social
behaviours emerge from a complex structure of social relations
and the dynamics of personal influences14,15. In such real-world
networks, the topology is important because it mediates the effect
of modifications in local interaction that can sometimes affect
the networks dynamical behaviour. Topology could thus be a
determining factor to modify or evolve the function of networks16.
In this picture, new dynamical behaviours emerge from ‘tinkering’
the local interactions from old systems. In living organisms, genetic
and protein networks have evolved through a process of mutations
and selection to carry out specific functions under specific
environmental conditions. This process has inspired physical
scientists to apply a similar evolutionary approach to explore

solutions to difficult optimization problems and to search for novel
designs of artificial systems17. For example, evolutionary algorithms
have been used to train software and even reconfigurable electronic
chips to carry out pre-determined tasks18. Also known as ‘evolvable
hardware’, these electronic devices are composed of large numbers
of neuron-like elements whose interactions are programmable19. To
exploit the power of this evolutionary approach, we must identify
the key organizing principles that govern the relationship between
topology and the networks ability to evolve. As it is vital for any
biological system to adapt and rapidly carry out new functions,
long training time is a fundamental limitation of the evolutionary
approach in engineered systems20. Therefore, understanding how
specific architectures impose evolutionary constraints on complex
networks is key to the design of artificial systems.

Here we use boolean threshold dynamics as a general
framework to model the dynamics of large complex networks.
This framework has previously been successful in modelling central
biological dynamical processes such as the cell cycle in yeast6

and the expression of the polarity genes in Drosophila segments5

(see Supplementary Information, Fig. S2A). In engineering,
boolean neural networks have been used in a wide variety
of applications, such as electronic circuits (see Supplementary
Information, Fig. S2B) and pattern recognition. We use boolean
threshold networks as a theoretical test-bed to investigate
how networks with distinct topologies evolve to carry out a
pre-determined target function. To drive networks’ evolution, we
use a standard evolutionary algorithm consisting of successive
cycles of random mutations and selection. Similar algorithms
have been applied to boolean networks to study the emergence
of homeostasis and noise imprinting9, evolutionary plasticity
of biological systems16, modularity21, and more recently the
emergence of motifs8 in engineered systems. In this study,
we wish to compare the evolutionary paths of networks
with either scale-free or homogeneous random topologies. We
use directed graphs in which nodes represent the network
elements and the arrows between nodes represent interactions
between elements. In random homogeneous networks, the
number of connections per node, k, is Poisson distributed:
Prand(k) = e−〈K〉〈K〉k/k!. The mean connectivity 〈K〉 is the
relevant topological parameter to characterize the random network
architecture. Conversely, the topology of scale-free networks
is heterogeneous and the number of connections per node
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Figure 1 Network dynamics and evolutionary algorithm. a, Boolean threshold node. Each connection (arrow) between nodes has a weight wij indicating the relative
strength of the interaction. For each node i with Ki inputs there are Ki non-zero weights. If a weight is positive, the interaction is activating; if it is negative, the interaction is
inhibitory. The weights wij are distributed uniformly in the interval (−1,1). A node is active or inactive (value 1 or 0) depending on the sign of the sum of its incoming
interactions. We also implement specific rules for all Ki = 1 nodes (Supplementary Information). b, Network dynamics and target function. One node from the network is the
output (here σ6). The fitness is calculated by comparing the time series from the output node with the target function. c, Mutation and selection processes. Networks are
mutated at fixed rate μ. Mutations include both changing an incoming connection of a node (arrows in bold) and changing the weight of a connection (numbers in bold). The
networks with the highest fitness are then selected to form the population of the next generation. Each iteration of this process is one generation step.

is power-law distributed PSF(k) = k−γ /
∑∞

k=1 k−γ , where the
associated topological parameter is the degree exponent γ .
Scale-free networks here have both in- and out-degree distributions
that are power-law distributed; we generate networks with a given
degree distribution like in ref. 18 (Supplementary Information).
To model the interactions between individual nodes we use a set
of rules that determine the dynamical behaviour of the network.
We approximate the activity of each element by a simple two-state
model22 (σi = 1 or σi = 0). The sum of all interactions, activating
or inhibitory, determines the state of each node7,23 (Fig. 1a).
The state of a whole network is defined at each time point by
σ(t) ={σ1,σ2, . . . ,σN} and goes through a transient regime until it
falls within a cycle.

We use a simple evolutionary algorithm to drive the evolution
of a population of networks towards a pre-established target
function9 (see the Methods section). A population of networks
evolves through a sequence of random mutations and selection,
such that the distribution of incoming connections remains fixed
(Fig. 1c). The networks are then selected according to the distance
of their output to the target, which defines the fitness function
(Fig. 1b). Under these conditions, the fixed network topology has
to be determined prior to this process. For example, a specific
topology could emerge as the outcome of a higher-level selective or
growth process. Finally, we want to produce robust functions, that
is, cycles independent of the choice of initial conditions. Hence, we

randomly choose initial values for each network at each generation,
so that the final evolved networks are robust against variations
of initial conditions. Robustness is a key property of biological
and engineered networks because they need to maintain important
functions under variations of environmental conditions24,25.

In Fig. 2 we show typical evolutionary runs for random
(Fig. 2a) and scale-free networks (Fig. 2b). The parameters
(〈K〉 = 1.9; γ = 2.5) are chosen such that networks of both
categories have the same average number of connections 〈K〉
and the same number of nodes N . It is also possible to
compare networks with similar dynamical behaviour (see the
Supplementary Information) but for the sake of simplicity we chose
to identify networks by their average connectivity. The fitness of
50 statistically independent runs is shown in Fig. 3 for the same
values of parameters. The evolutionary path of a population of
homogeneous random networks and scale-free networks is initially
rapid, but after just a few generations, the fitness behaviour differs
greatly. In the population of homogeneous random networks the
evolutionary path exhibits long plateaus where the fitness remains
steady over hundreds of generations26. Plateaus are followed by
punctuated jumps where the functions in the population come
closer to the target function. This evolutionary behaviour resembles
that of punctuated equilibrium described in ref. 12. We interpret
the presence of the plateaus as the signature of flat directions in
the fitness landscape between sparsely distributed local optima.
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Figure 2 Evolutionary path of a population of 50 networks towards a fixed target function. a,b, Average distance to the target is defined as 1-Fitness (Npop = 50,
N= 500, Lc = 10 and μ = 0.02) for homogeneous networks (a) and scale-free networks (b). For random networks over 800 generations there is only one function in the
whole population with 1-Fitness = 0.3 for which the value of the output node has period L= 2 (generation 500). After the advantageous jump, the population includes two
functions (either 1-Fitness = 0.3, L= 2 or 1-Fitness = 0.1, L= 10) that the networks follow depending on the initial conditions (generation 1,200). In scale-free networks,
after only a few generations (generation 10) the population consists of ∼25 different functions of various periods (L= 1, 2, 5, 20, 40, 50). The perfect function, which
matches the target function, appears as soon as the 12th generation, but does not dominate the population until ∼250 generations.

During the plateaus the network population is dominated by a
single function: a short cycle (usually with length L = 1 or 2)
that maximizes the fitness (Fig. 2a). Although there is no
measurable improvement of the fitness, neutral mutations modify
connections and weights in the connectivity matrix of the networks
within the population but do not affect the function. When an
additional advantageous mutation occurs, the number of copies
of the associated mutant grows exponentially with the number of
generations and becomes dominant in the population (Fig. 2a).

In contrast, a population of scale-free networks evolves
continuously towards the target function (Fig. 2b). After only few
generations, the population consists of many different functions
which can also have different cycle lengths (Fig. 2b). We interpret
the diversity of functions in scale-free networks as the signature
of the fitness landscape that allows the population to escape local
optima with very few mutations. Many mutated networks with
an improved function occur at each generation, and produce
a population composed of different functions until an optimal
solution (1-Fitness = 0) becomes dominant. Surprisingly, even
poor solutions can survive over many generations along with the
best fit. We then determine whether for each topology, independent
runs with distinct initial conditions and mutations exhibit similar
evolutionary paths. We find that evolutionary paths of random
networks depend on rare advantageous mutative events and thus
differ from one another (Fig. 3a). For scale-free networks, the
distribution of independent evolutionary runs exhibits a similar
trend to that of individual runs (Fig. 3b). Functions of high fitness
emerge by evolving existing functions gradually towards the target

function. Hence, a population of scale-free networks not only
evolves faster than that of random networks but also has the
capacity to produce a wide range of heritable functions27.

The dynamical behaviour of boolean networks is characterized
by a phase transition from order to chaos. In the ordered
phase, a small difference in the initial conditions fades away,
whereas it spreads and dominates the dynamics in the chaotic
phase28. These two phases correspond to low and high average
connectivity respectively. We calculate the critical point using the
annealed approximation introduced by Derrida and Pomeau28.
The dynamical behaviour of boolean threshold networks depends
not only on 〈K〉, like in Kauffman networks25, but on the higher
moments of the distribution P(k). Scale-free and homogeneous
random networks with the same average connectivity can exhibit
distinct dynamical behaviour29. Random networks exhibit chaotic
behaviour for 〈K〉 larger than Kc = 3.83 and scale-free networks
exhibit chaotic behaviour for exponents γ lower than γc = 2.42
(see the Supplementary Information). We found that the ability
for homogeneous random networks to evolve depends on the
specific value of the parameter 〈K〉 (Fig. 4a). In particular, the
fitness increases for values of 〈K〉 ranging from the critical to
the chaotic phase. Conversely, the fitness of scale-free networks
does not show large variations with different values of γ (Fig. 4b).
It is conceivable that scale-free networks have a predetermined
evolutionary advantage because the length of their cycle matches
that of the target function. However, we found that the convergence
of the fitness function was also better for scale-free networks even
when the length of the target function, Lc, was much smaller
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Figure 3 Distribution of evolutionary paths. a,b, Distribution of the fitness of 50 populations as a function of the number of generations for homogeneous random networks
(a) and for scale-free networks (b). Results for 〈K 〉 = 4.1 and γ = 2.0 are presented in Supplementary Information, Fig. S8.

(see the Supplementary Information). A qualitative argument
allows us to understand the origin of these distinct evolutionary
behaviours for the two topologies. First, we compute the average
probability, 〈Pdyn〉, that a perturbation associated with a mutation
of a given node would affect the dynamics of another directly
connected node (see the Supplementary Information). Then, the
probability that this latter mutation would affect the dynamics of
the output node is 〈Pdyn〉�, where � is the average distance in the
network. We found that the probability 〈Pdyn〉� depends strongly on
the connectivity distribution of the network and is larger for scale-
free than for random networks. As a result, scale-free networks are
more likely than random networks to produce a new function by
several orders of magnitude. Scale-free topology alone allows the
evolution of networks towards the target function faster than those
with homogeneous random topology for any values of 〈K〉 or γ .

On the basis of the analysis of the phase diagram of boolean
networks, Kauffman suggested that evolution of real systems may
occur ‘at the edge of chaos’30. This hypothesis entails that systems
not only need to be stable to carry out a function but they also
need to be sensitive enough to perturbations to evolve towards
new functions. Because the critical phase gathers the two latter
properties, it was proposed that living systems may exhibit a
similar critical behaviour to be evolvable. In Kauffman’s picture,
the topological parameters have to be fine-tuned to specific values
so that systems can exhibit a critical behaviour. In contrast, in our
study, scale-free threshold networks evolve fast and continuously,
and the associated evolutionary paths are robust to variations of
the degree exponent γ . Consequently, the dynamical behaviour of
scale-free networks does not need to be fine-tuned to the critical
phase to promote evolution. On the other hand, homogeneous
random networks evolve through a series of sparse punctuated
changes, which inhibit their ability to evolve rapidly towards
the desired function. In contrast with scale-free networks, the
evolutionary paths of homogeneous networks depend on the
specific values of the average connectivity 〈K〉: random networks
with a low connectivity evolve slowly, whereas networks with
larger connectivity evolve faster. This study indicates that topology
governs the evolutionary paths of large complex networks, which

suggests that the ubiquity of certain topologies in nature, such
as scale-free, may also be the product of a selective process. The
underlying physical principles of this approach are general and
are applicable to a wide spectrum of neural-based systems that
model real-world complex networks ranging from biological to
engineered systems.

METHODS

NETWORK OUTPUT AND TARGET FUNCTION

Each round of mutations and selection is known as a generation. A series of
10,000 generations for one population is one evolutionary run. At each
generation a set of initial values is attributed randomly to each node. The value
of each node is updated following the dynamical rules described in Fig. 1a.
After a transient phase, the whole network follows a cycle of length L. Each
network has a fixed output node throughout one evolutionary run. The values
of the output node during the network’s cycle form a time series that is the
‘function’ of the network. This time series is compared with a target function of
length Lc using a fitness function (Fig. 1b). The time series of 0s and 1s, which
constitutes the target function, is randomly chosen for each evolutionary run
and is kept fixed throughout the run. At each generation we randomly choose
different initial conditions for each network so that we could select for
networks that are robust to variations of initial conditions.

EVOLUTIONARY ALGORITHM

First, we randomly generate a population of Npop = 50 networks that have
either a homogeneous random (with a fixed parameter 〈K〉) or heterogeneous
scale-free topology (with a fixed parameter γ). Second, we increase the size of
the population to include both the non-mutated parent networks and the
mutated offspring. Each network from the initial population will have an
offspring of three mutated networks. The size of the population will then be
M = (3 mutants+1 parent)Npop. Third, we select a new generation of Npop

networks that have the highest fitness among the non-mutated parent networks
and the mutated offspring.

MUTATIONS

At each generation we mutate each node of each network in the population
with a fixed rate μ = 0.02 so that the expected number of mutations in each
network is μN , where N is the size of the network. For each mutative process
we randomly choose a node, and we either change one of its input connections
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same average connectivity, see Supplementary Information, Fig. S6.

or its weight in the associated updating rule (Fig. 1c). For such mutations the
distribution of incoming connections remains unaltered, so that a population
of networks that starts as scale-free (random) remains scale-free (random)
throughout an evolutionary run. On the other hand, the distribution of
outgoing connections can change. For random populations the final
distribution of outgoing connections is identical to the initial one, whereas for
scale-free populations the distribution evolves as it would if there were only
random mutations without any selection (see the Supplementary Information).

FITNESS FUNCTION

The fitness is a real number ranging between 0 and 1. The value of the fitness
function F will be about 0.5 when the networks are randomly chosen and 1 for
a network output that exactly matches the target function. To calculate the
fitness for each network, we update the network according to the dynamical
rules until the networks falls within a cycle. The fitness of each network is
calculated using the hamming distance of the output node to the
target function:

F = max

{
1− 1

L ·Lc

L·Lc∑
k=1

∣∣σ(tk)−σtarget(tk)
∣∣}. (1)

The maximum is calculated over all cyclic permutations of the target function.
The sum on the right-hand side is the time average of the distance between the

output node and a given target function during the cycle of the network. The
sum is taken over L ·Lc, where Lc is the length of the target and L is the cycle
length of the whole network (to save computational time, we calculate this sum
using the least common multiple of Lc and L). Under this condition, the fitness
is independent of the value at which the output node begins the cycle. In our
calculations all sums cannot exceed tmax = 35 ·Lc because of computational
restrictions. This cutoff is not expected to affect the results because almost all
networks have cycles and transient times much shorter than tmax (see
Supplementary Information). The target function is a cycle of length Lc = 10.
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