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Boolean Threshold Dynamics The states of the nodes are updated simultaneously at 
every time step according to the threshold rule depicted in Fig.1C.  The state of a given 
node i at time t+1 depends on the state of Ki other nodes at time t, where Ki is the number 
of inputs for node i. We model the interactions between nodes using the connectivity 
matrix wij, in which each coefficient is positive or negative and represents an activating 
(positive) or inhibiting (negative) interaction between nodes i and j, and wij=0 when there 
is no interaction. The weights wij are distributed uniformly in the interval (−1, 1).  To 
determine whether a node is active or inactive (value 1 or 0) we sum all its’ interactions 
and compare them to a given threshold which here is set to 0. Threshold rules (Fig.1C) 
allow us to implement nodes with large numbers of inputs at relatively low computational 
cost compared to Boolean  Kauffman Networks1,2. For reasons explained in 
Supplementary Information we modify the rules for all Ki = 1 nodes as follows to be σi 
(t+1) = σj (t) if wji > 0 and σi (t+1) = ¬ σj (t) if wji < 0. 
 
Importance of poorly connected nodes (Ki = 1) Because nodes with one connection 
represent a large part of the nodes in scale-free networks (e.g. 83% for γ=3.0 and 61% for 
γ=2.0), poorly connected nodes may play an important role in the dynamics of networks. 
We find that the updating rules of the Ki = 1 nodes is essential in the dynamics of scale-
free networks for any value of the exponent γ (see Fig.S3).  Similarly, the dynamics of 
homogeneous random networks with low connectivity ‹K› depend strongly on the 
updating rules of poorly connected nodes. The threshold rules in Fig.1C for the Ki = 1 
nodes determine the value of these nodes that are frozen in one state. For example, when 
a node has the value σi (0) = 1 with a negative weight wji < 0, it then will either take the 
value 0 from the first step and remain 0 for ever, or it will remain 1 for a few time steps 
and then take the value 0 thereafter. The fact that the nodes with connectivity Ki = 1 
create a large set of components that are frozen in one state prevents the networks from 
exhibiting rich dynamics. We therefore modify the rules for every node with Ki = 1 node 
as follows: (σi (t+1) = σj (t) if wji > 0 and σi (t+1) = ¬ σj (t) if wji < 0). 
 
Advantages of Boolean Threshold Networks In Kauffman networks, each node with Ki 
inputs is associated with a truth table of size . Therefore, such exponential complexity  
may be a limitation for numerical studies of  Kaufmann networks
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rules (Fig.1C) the state of a node with Ki inputs is the sum of Ki numbers, and the 
associated complexity of the calculation grows linearly with Ki. Consequently, BTNs are 
convenient for simulating numerically (within practical computational times) the 
dynamics of networks with large connectivity and scale-free distributions. 
 
Generation of directed networks Random networks are generated using the binomial 
model described in 6. In our study, scale-free networks have inward and outward 
connection distributions which are both power-law. In general, in order to generate scale-
free networks we implement the configuration model7,8 (CM). Since the networks are 
directed, we have to discriminate between networks that have only in- or out- or both 
degrees scale-free distributed. For networks with only in- or out degree being scale-free, 
we choose the corresponding degree ki of every node using a power law random number 
generator. The connections between nodes are then assigned by picking the ki 
connections for every node at random avoiding identical connections (self connections 
are here allowed because the graph is directed). In the case when both in- and out- 
degrees are scale-free, we first assign the out-degree ki

out of every node according to the 



distribution; then, we assign the in-degree ki
in for every node (such that ). 

The connections are then assigned: for every node from which k

∑∑ =
N

in
i

N

out
i kk

i
out connections start (tail 

of the arrow) we choose the other end of the connection (head) randomly out of the set of 
nodes that have not yet been assigned all of their inputs. In order to be able to assign all 
connections without identical arrows, we first assign as inputs the nodes with high ki

out. 
 
The only difference between the CM and the UCM algorithm is a cut-off NKkc ⋅=  
imposed on the degree of every node9. The CM algorithm has a natural cut-off 
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c , given by the fact that we draw N numbers from a power-law distribution. 
Imposing the cut-off eliminates degree correlations between nodes. We compared the two 
algorithms (Fig.S12); imposing the new cut-off has small influence on the evolutionary 
paths of scale-free networks.  
 
Network Size The network size is 500 nodes (N=500). The size of the network is large 
enough in order to clearly distinguish scale-free from random topology.  The defining 
feature of a scale-free network is the existence of nodes with large numbers of 
connections. However, these connections cannot be observed unless N>>‹K›. When ‹K› 
and N are comparable the probability of finding a highly connected node is 
approximately equal for both topologies. Additionally, for random networks with 
‹K›<<N finite size does not affect the distribution of connections, while for scale free 
networks the finite size puts a cut-off on the possible number of connections. 
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Phase Transition Calculation  
Imagine we choose a network and make two copies with slightly different initial 
conditions {σi

(1)} and {σi
(2)}. We monitor the propagation of the difference in terms of the 

hamming distance: 
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In order to calculate the critical point, we use the annealed approximation introduced by 
Derrida and Pomeau 10: 
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The function M is a measure of the noise propagation within the network. If M > 1, the 
network is in the chaotic phase; if M < 1, the network is in the frozen phase. M = 1 gives 
the condition for criticality. ps(k) is the probability that a change of state of one arbitrary 
input of the node i at time t changes the state of the output of this node i at t+1. This 
quantity is also known as the local probability of noise propagation 11,12. In order to 
determine the critical point for BTNs we need to calculate ps(k). This calculation depends 
on the updating rules of the network. Using the threshold rules (Fig.1C) we find 13: 
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Remarkably, the local probability of noise propagation, ps(ki), depends on the 
connectivity ki of each node. Consequently, the quantity M in eq.(1) depends not only on 
‹K› like in Kauffman networks14, but on the higher moments of the distribution P(k).  As 
a result, scale-free and homogeneous random networks with the same average 
connectivity can exhibit different dynamical behavior11,15. Random networks exhibit 
chaotic behavior for ‹K› larger than Kc= 3.83 and scale-free networks exhibit chaotic 
behavior for exponents γ lower than γc= 2.42 for N→∞ and γc= 2.4 for N= 500 13. 
 
The effect of mutations We want to estimate the probability that a mutation, which 
changes the dynamics of a random node, affects the dynamics of the output node. This is 
roughly the probability that this dynamical mutation propagates at distance : λ

λ〉〈≈〉〈 dynPP      (5) 
where  is the probability that a perturbation of the dynamics of a given node 
affects the dynamics of a directly connected node. To estimate the average distance 
between nodes in a directed graph with arbitrary degree distribution we use the notation 
in 

〉〈 dynP
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for any degree distribution. For scale-free networks the average connectivity is simply 
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1   γγ .  In the previous section we calculated the probability  

that a change in one arbitrary input of a node with k connections changes the state of that 
node. Let’s assume that we mutate a given node i in a way that changes its dynamics (the 
time series of its status). If there is a connection between the mutated node i and another 
node j, the average probability that the dynamics of j changes is: 

)( is kp

     (7) ∑
=

=〉〈
N

k
iisdyn kPkpP

1
)()(

which depends on the connectivity distribution.  We insert eq.6 and 7 in eq.5 to calculate  
 (see Fig.S9). The probability is at least two orders of magnitude smaller for all 

values of ‹K› and γ that were used. 
〉〈P

 
Computational time A typical evolutionary run (‹K›=2, Lc=10, N=500) took 
approximately 1.5hrs on a single 2.4 GHz Pentium Xeon processor. The networks and the 
evolutionary algorithm were implemented in C programming language.   
 
 



Comparison of random and scale-free networks with equal connectivity We 
compared networks with the same average connectivity which is the ‘natural’ choice, 
since if we were to rearrange the connections of one network we could construct the 
other. However, there could be more than one way of comparing networks of different 
topologies. For example, we can compare networks that have similar dynamical 
properties as measured by the function M defined in Eq.(3). We could therefore compare 
networks within the same dynamical phase, i.e. random networks of small connectivity 
with scale-free networks with large degree exponent γ and vice versa. However, our 
results show that the convergence of the fitness function of scale-free networks is always 
superior to that of random networks independent of the values of ‹K› and γ.  
 
Targets of smaller cycle length It is difficult to characterize what the role of the 
distribution of cycle length is on evolution of networks.  It has been demonstrated17 for 
Boolean dynamics that random networks with small ‹K› (in the ordered phase) have short 
cycles while networks with large ‹K› (in the chaotic phase) have a broader distribution of 
cycles. However, scale-free networks always evolve faster than random networks 
independent of the specific values of ‹K› and γ. We performed a series evolutionary runs 
(Fig.S17) where the cycle length of the target function is much shorter (Lc=2 and Lc=3) 
than that discussed in main text. For this target function, we find that scale-free networks 
still perform better. 
 
Dependence of simulations on parameters We have checked our results for various 
types of target tasks. We varied the length of the target function Lc from 1 to 50, the 
mutation rate µ from 0.001 to 0.1 and the number of output nodes Nout from 1 to 500. We 
found that the difference between evolutionary paths of the two topologies is suppressed 
only when the target function is too “hard”, namely when Nout is more than 50, or when 
the task is trivial Lc = 1.  
 
 



 

 
 

Figure S1:  Heterogeneous versus homogeneous topology – Random networks (A) and 
scale-free networks (B). Networks are represented as undirected graphs for simplicity. 
Each network has 500 nodes. Nodes are colour coded according to their connectivity: 
(blue) 1-3 connections; (green) 4-10; (orange) 11-100; (red) over 100. 
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Figure S2: Boolean threshold rules (A) Example of a covalent modification reaction of 
an enzyme that exhibits a switch-like behaviour between two states, phosphorylated 
(active state) or unphosphorylated (inactive state). The forward and backward reaction 
rates are controlled by catalyst proteins represented by positive or negative inputs. (B) 
Electronic implementation of the threshold rule. A threshold gate with an arbitrary 
number of inputs is implemented using nano-electronic devices18 (Monostable Bistable 
Logic Element). These devices are built from RTDs (resonant tunneling devices) and 
HFETs (hetero junction field-effect transistors). The circuit represents a node where 
positive (negative) weight inputs correspond to the upper (lower) half of the circuit. 
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Figure S3: Probability distributions of the number of time steps T+Lc needed for a 
network to complete its first cycle, where T is the transient time and Lc is the length of the 
cycle. We found that in all categories of networks plotted at least 99% of sampled 
networks had T+Lc<tmax=350 where tmax is the cut-off used in the calculation of the 
fitness (see Methods). The distribution is calculated from a sample of 10000 randomly 
generated networks. We chose an upper limit of number of time steps (T+Lc)max=2000. 
(A) Distribution of Random homogeneous networks with ‹K›= 1.9 and ‹K›=4.1; for 
chaotic networks T+Lc was above (T+Lc)max. (B) Distribution of scale-free networks with 
γ=3.0, γ=2.5, and γ=2.0.  
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Figure S4:  Importance of the dynamics of Ki = 1 rules. Despite the heterogeneity of 
scale-free networks it seems that poorly connected nodes are crucial to perform any 
interesting dynamics. The same is true for sparsely connected random networks.  (A), 
(C): Distribution of final value of the fitness for networks that have Ki= 1 nodes 
following the threshold rule (and become eventually frozen). (B), (D): Ki = 1 rules are 
modified to either follow or negate the input of the node (final fitness of 50 runs for each 
case). The network output is chosen to be a highly connected node for the scale-free 
networks and Kout

 i ≠ 1 for random topology. After 10000 generations networks with the 
modified rules are able to evolve towards the target much better than for the networks 
with the Ki = 1 nodes following the threshold rule. We obtain similar behavior when the 
states of the Ki = 1 nodes are randomly updated.  



 

 

 
 
Figure S5: Distribution of out-going connections Pout(k) in an initial population of scale-
free networks (black), in an evolved population after 10000 generations (orange), and in a 
randomly mutated population without selection (green). Due to the nature of the 
mutations described in Methods (see main text), the in-coming distribution of 
connections remains scale-free while the out-going distribution can change. In this graph 
we see that Pout(k) evolves as if there was no particular selection (orange and green 
distributions look similar). 



 

 
 

Figure S6: Average evolution for networks of random and scale free topology. Average 
fitness of 50 independent evolutionary paths (Npop= 50, N= 500, Lc = 10 and µ = 0.02). 
We compare random and scale-free networks with the same connectivity ‹K›; (A): γ = 2.5 
- ‹K›= 1.9; (B): γ = 2.0 - ‹K›= 4.1. The fitness of scale-free networks with poorly-
connected output nodes has the same qualitative behaviour as the one of scale-free 
networks with highly-connected output nodes. However, for all exponents γ, the fitness 
function associated with a highly connected output node (many inputs) converges faster 
than that of a poorly connected node. This indicates that the computation is made at the 
highly connected nodes and then distributed to the rest of the network. 
 
 



 

 
 
Figure S7: Mean evolutionary path for scale-free networks in which the output node is 
poorly connected (Ki = 1). The plot shows the average fitness of 50 independent 
evolutionary paths (Npop= 50, N= 500, Lc = 10 and µ = 0.02). The fitness of scale-free 
networks with poorly-connected output nodes have the same qualitative behaviour as 
scale-free networks with highly-connected output nodes. 
 



 

 
 
Figure S8: Distribution of the fitness of 50 populations as a function of generation time. 
(A) ‹K›= 4.1 random homogeneous networks. The length of the plateaus becomes smaller 
for larger values of ‹K› and the transitions can be either gradual or punctuated. However, 
we still observe waiting periods interrupted by transitions from one level of fitness to 
another.and (B) Scale-free networks with γ = 2.0. Similar to Fig.3B in main text.  
 



 
 

Figure S9: The probability ps(ki) that the output of a function is altered if we change one 
of the inputs. 
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Figure S10: Probability that a random mutation affects the output signal as a function of 
‹K› or γ  for random and scale-free networks respectively. 



 
 

Figure S11: Mean evolutionary path for populations of networks (γ = 2.5 - ‹K›= 1.9) with 
both in and out degrees power law distributed (black), in degree distribution scale-free 
and out-degree random (ref), out degree distribution scale-free and in-degree random 
(green) and both in and out random (blue). The plot shows the average fitness of 50 
independent evolutionary paths (Npop= 50, N= 500, Lc = 10 and µ = 0.02). The in-degree 
distribution appears to determine the evolutionary path of the networks. 



 
Figure S12: Mean evolutionary path for scale-free networks (γ = 2.5) generated using the 
configuration model (CM, black) or uncorrelated configuration model (UCM, red). The 
plot shows the average fitness of 50 independent evolutionary paths (Npop= 50, N= 500, 
Lc = 10 and µ = 0.02). The introduction of a cut-off on the degree distribution for the 
UCM does not affect the evolutionary path of the networks. 
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Figure S13: Reduced Mutation Rate- Mean evolutionary path of populations of random 
(A) and scale-free (B) networks for various average connectivities ‹K› and degree 
exponents γ. Average fitness of 50 independent evolutionary paths (Npop= 50, N= 500, Lc 
= 10 and µ = 0.001). Mutation rate is reduced by an order of magnitude compared to the 
evolutionary runs in the main text, so that the expected mutation rate per generation for 
each network is 0.5. Comparison of different mutation rates for random (C) and scale-
free networks (D). 
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Figure S14: Network Size- Mean evolutionary path of populations of random (A) and 
scale-free (B) networks for various network sizes (N= 20, 50, 100, 200, 500). Average 
fitness of 25 independent evolutionary paths (Npop= 50,  Lc = 10 and µ = 0.002). The 
convergence of the fitness is insensitive to the variation of network size for N>50.  
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Figure S15: Connection vs. weight mutations- Mean evolutionary path of populations 
of random (A) and scale-free (B) networks. Average fitness of 50 independent 
evolutionary paths (Npop= 50, N= 500, Lc = 10 and µ = 0.002). We vary the relative 
probability that a given mutation changes either a weight wij or a connection. Pw is the 
probability that a mutation changes a weight. Varying Pw only affects the convergence of 
the fitness function for scale-free networks (when there are no mutations of weight). 
 
  



 

 
 

Figure S16: - Mean evolutionary path of populations of scale-free networks. Mutations 
conserve the in-degree distribution (black) or the out-degree distribution (red). The 
convergence of the fitness function is insensitive to this change. Average fitness of 25 
independent evolutionary paths (Npop= 50, N= 500, Lc = 10 and µ = 0.02).  
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Figure S17: - Mean evolutionary path of populations of random and scale-free networks. 
Average fitness of 25 independent evolutionary paths (Npop= 50, N= 500, µ = 0.001) for 
target cycles of small length Lc=2 (A) Lc=3 (B).  
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