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Stochastic pulsatile dynamics have been observed in an increasing
number of biological circuits with known mechanism involving
feedback control and bistability. Surprisingly, recent single-cell
experiments in Escherichia coli flagellar synthesis showed that
flagellar genes are activated in stochastic pulses without the
means of feedback. However, the mechanism for pulse gener-
ation in these feedbackless circuits has remained unclear. Here,
by developing a system-level stochastic model constrained by a
large set of single-cell E. coli flagellar synthesis data from dif-
ferent strains and mutants, we identify the general underlying
design principles for generating stochastic transcriptional pulses
without feedback. Our study shows that an inhibitor (YdiV) of
the transcription factor (FIhDC) creates a monotonic ultrasensitive
switch that serves as a digital filter to eliminate small-amplitude
FIhDC fluctuations. Furthermore, we find that the high-frequency
(fast) fluctuations of FIhDC are filtered out by integration over
a timescale longer than the timescale of the input fluctuations.
Together, our results reveal a filter-and-integrate design for gener-
ating stochastic pulses without feedback. This filter-and-integrate
mechanism enables a general strategy for cells to avoid prema-
ture activation of the expensive downstream gene expression by
filtering input fluctuations in both intensity and time so that the
system only responds to input signals that are both strong and
persistent.
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he gene regulatory network for controlling the bacterial flag-

ellar synthesis and assembly has long served as a canonical
example of transcriptional cascade (1-8), in which a particular
gene product (protein) can serve as the transcription factor (TF)
for other genes, which encode proteins that serve as TFs for
other downstream genes, and so on. The bacterial flagellar pro-
moters are organized in three classes, each of which underlies
specific stages of the complex flagellar assembly and chemosen-
sory signaling processes (9-11). The class 1 promoter controls
the transcription of flhDC, the operon encoding for the proteins
FlhD and FIhC, that assemble into the heterohexamer FIhD,C:
(refer to as FIhDC hereafter), which is the master regulator of
flagellar synthesis. The master regulator serves as the TF for class
2 promoters and initiates the transcription of seven operons nec-
essary for the assembly of the basal body and the hook of the
flagellum (12, 13). A specific class 2 protein, FliA, activates class
3 promoters to express class 3 genes coding proteins for the flag-
ellar filament and the chemotaxis signaling pathway (14). The
bacterial flagellar synthesis represents a remarkable process in
which over 50 different genes are expressed in a coherent fashion
over several generations to build a large functional protein com-
plex. Over the past decades, experimental studies have yielded
many valuable insights about the transcriptional network that
underlies flagellar synthesis in Escherichia coli and Salmonella
(9, 10, 15-18). In particular, population measurements suggested
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that the transcriptional cascade follows a deterministic temporal
order where genes in subsequent classes are activated sequen-
tially and, once turned on, promoters remain active continuously
during exponential growth (10).

Recently, Kim et al. (19) measured gene expression dynamics
of single E. coli cells over many generations by using a microflu-
idic device called the “mother machine” (20, 21). Surprisingly,
the new single-cell data showed that flagellar promoters are
stochastically activated in intermittent pulses, that is, bursts of
strong activity amid a quiet background. Due to their stochastic
nature, transcriptional pulses can only be detected by single-cell
measurements, and they were missed in previous cell population
study (10).

Indeed, rapid developments in quantitative single-cell mea-
surements have revealed that quasi-periodic or stochastic pulsat-
ing dynamics is a common dynamic activity pattern in biological
circuits in a wide range of organisms, for example, TF Msn2 in
yeast (22, 23), TF p53 (24) and NF-xB (25) in mammalian cells,
bacterial TF o in the bacterium Bacillus (26), and stochastic cell
fate switching in microbes (27). Typically, the underlying mecha-
nism involves bistability caused by a combination of positive and
negative feedback loops (28); a recent theoretical study showed
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that stochastic pulses may also be caused by a negative feed-
back loop alone (29). Suffice to say, most known mechanisms
for pulses involve some form of feedback control. However, in
Kim et al. (19), pulses were present even when the promoter
of FIhDC was deleted and replaced by a synthetic/constitutive
promoter that does not respond to flagellar endogenous regula-
tor and thus rules out the involvement of any feedback control.
Additionally, in a different system that controls cell fate, stochas-
tic pulses were also successfully generated by transferring, in E.
coli, a reconstituted gene circuit without feedback (30).

Prompted by these recent observations, we ask the ques-
tion, what are the underlying design principles that govern the
stochastic transcriptional pulses without feedback? To answer
this question, we use the large single-cell expression time series
dataset for different strains and mutants from Kim et al. (19) to
quantitatively and consistently constrain a system-level stochas-
tic model. Using this approach, we aim to identify the minimum
design principles necessary to generate stochastic transcriptional
pulses without feedback in general, and specifically during E. coli
flagellar synthesis.

Results

We first present a system-level (coarse-grained) stochastic model
for the regulation of class 2 genes by FIhDC. We then use the
model to analyze and explain the steady-state distributions of
class 2 activity and its dynamics observed in single-cell exper-
iments (19). Next, we propose possible molecular mechanisms
underlying the main findings from our analysis and describe
a filter-and-integrate mechanism for controlling noisy FIhDC
signal in E. coli. Finally, we use our model to make testable
predictions for responses to realistic time-varying signals.

A System-Level Stochastic Model for Class 1 and Class 2 Gene Expres-
sion Dynamics. In the experiments by Kim et al. (19), they used
strains whose expression of class 1 genes was controlled by pro-
moters of different strengths (see SI Appendix, Supplementary
Information A for details of the experimental data). For each
strain, long time series (~ 70 generations) of class 1 and class
2 promoter activity were simultaneously measured within the
same cells using fluorescent proteins as proxy. They found that
distributions of class 2 promoter activity depend on the class
1 promoter strength as well as the presence or absence of the
inhibitor YdiV (31-33) [also known as RfiP (34)].

Here, we use the class 1 reporter fluorescence signal as a
proxy to represent the FIhDC level C; as the input to the class 2
gene transcription process. Following Kim et al. (19), we define
the class 2 gene expression activity (output), A,, as the time
derivative of the fluorescence time series of the class 2 reporter
gene, which is assumed to be proportional to the degree of
activation of class 2 promoters (see SI Appendix, Supplemen-
tary Information A for details of computing and denoising A,
from experimental data obtained in the “mother machine”). We
propose a system-level stochastic model to describe dynamics
of these two coarse-grained observables, A; and C;, without
considering molecular details. In particular, the A, dynamics in
a single cell is described by a stochastic differential equation
(SDE) that has three basic terms: decay (degradation), activation
(production), and noise,

ddy A= f(C) L, _ A2 f(C1)

dt T2 T2 T2

+6s, [1]

where s = (4, —) represents cells with and without YdiV, respec-
tively, and 7; ' is the decay rate with 7, as the characteristic
timescale associated with class 2 expression. For convenience,
we write activation rate of the class 2 promoter as f,(C1)/72 so
that {4;) = (f;(C1)). We call f;(C1) the response function, as
it characterizes how class 2 activity responds to class 1 protein
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level C;. The white noise 8, has zero mean (6, (t)} =0 and cor-
relation (0.(t)8(t')) =2A,({C1))é(t — t') with noise strength
given by A,({C1)). Here, we assume that the noise strength
A, ({C1)) depends only on the average C; concentration (C1),
which is valid due to the timescale difference for A; and Ci, as
will become clear later in this work.

The activity of class 2 genes A2 depends on the class 1 protein
level Ci, whose dynamics can be modeled by a similar SDE,

a0 (C-w)
dt T1

Gilicm @
T

where 1 is the decay time for class 1 protein. We define p/m
as the C) production rate, so that the steady-state average is
(C1) = p with 2 depending on the promoter strength of a spe-
cific strain. The white noise 7 has zero mean (n(¢)) =0 and
(n(t)n(t')) =2A,68(t — t'), with the noise strength A; as a con-
stant for all promoter strengths. The noise 7 is multiplied by C;
in Eq. 2. This choice of a linear multiplicative noise is due to the
fact that it provides a better fit to experimental data in compar-
ison with other forms of noise such as additive and square root
multiplicative noise (see SI Appendix, Supplementary Information
B and Fig. S2 for a detailed comparison). Mechanistically, the
multiplicative noise may originate from random partitioning of
protein molecules during cell division and fluctuations in protein
degradation rate.

An important assumption of our proposed model is that the
observed class 2 pulses do not require transcriptional feedback
on YdiV. Indeed, this assumption is fully supported by mother
machine single-cell data published in Kim et al. (ref. 19, figure
S(11)), which shows that, when the expression of YdiV is con-
trolled by a synthetic constitutive promoter, the pulses are still
present. Overall, our “minimal” system-level (coarse-grained)
model consists of two SDEs (Eqgs. 1 and 2) with a few physi-
ologically meaningful parameters and functions: two timescales
71 and 72, a constant multiplicative noise strength A, a strain-
dependent noise strength A;(u), and two response functions
fs(Ch). In the following, by fitting all of the single-cell data for
different strains (19) with our model quantitatively, we deter-
mine the parameters and response functions, which help us
identify the underlying mechanism for transcriptional pulses.

YdiV Creates an Ultrasensitive Switch. We first use our model to
study all of the steady-state class 2 activity distributions from
experiments (see Methods for details on simulations of our
model). In Fig. 14, experimentally observed distributions of the
normalized class 2 activity Az/(A4;) for cells with and with-
out YdiV for three class 1 promoter strengths—low (P1, red),
medium (P4, green), and high (P7, blue)—are shown (see S/
Appendix, Supplementary Information A for details of the exper-
imental dataset). The most drastic difference between cells with
and without YdiV is for strain P4 that has a medium promoter
strength similar to that of the wild-type cells. The Az /{A;) dis-
tribution for the P4 strain in the presence of YdiV (green line
in Fig. 1 A, Left) is strongly asymmetric with a peak that is
significantly shifted with respect to the mean, whereas the dis-
tributions for lower and higher promoter strengths are more
symmetric. This asymmetry is largely absent in strains without
YdiV (Fig. 1 A4, Right). For simplicity, we fit the experimental
data by using Hill functions for the response functions f; and
tuning the shape of the Hill functions to minimize the differ-
ence between the distributions of C; and A, from the model and
those from experiments for different promoter strengths (see S/
Appendix, Supplementary Information C for details). Our model
can explain all of the steady-state A, distributions from differ-
ent strains together as shown by the direct comparison between
the experimentally measured distributions (Fig. 14) and those
obtained from our model (Fig. 1B).
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Comparison between experimental data and model results. (A) Distributions of the normalized class 2 activity Az /{Az) in the presence (Left) and

absence (Right) of YdiV for small (P1, red), medium (P4, green), and large (P7, blue) class 1 promoter strengths. Data are taken from ref. 19. We use the
black dashed lines to indicate the positions of its mean value and zero for A;. (B) The corresponding distributions obtained from our model. (C) Comparison
of typical time series of C;(t) and A;(t) from experiments and model for the P4 strain with and without YdiV. (D) Response functions obtained by fitting our
model to experimental data (19) with (f., solid line) and without (f_, dashed line) ¥YdiV. The circles (+YdiV) and crosses (—YdiV) indicate the mean value
from different mother cells in experiments. Note that f; does not pass through the center of the data points, due to its high nonlinearity ({f;(Cy)) # f:({Ci)).

The color code for each promoter is the same as in A and B.

The most significant difference in the dynamics of class 2 activ-
ity A2(t) between cells with and without YdiV also occurs in
strain P4 with a medium class 1 promoter strength similar to that
of wild-type cells. As shown in Fig. 1C, from the experiments,
the A, dynamics contains well-defined pulses in the presence of
YdiV, while pulses are not well separated and the presence of
higher-frequency noise appears to be unfiltered in the absence
of YdiV. These different activity dynamics are reproduced in our
model.

By fitting our model to the single-cell data (see SI Appendix,
Supplementary Information C for details of the fitting and
values of all of the fitted model parameters), we obtain
the response functions, f; (C:) and f_(C}), which cannot be
directly determined from experimental data because (A.)=
(fs(Ch)) #f:({C1)), due to their nonlinearity. As shown in
Fig. 1D (solid line), the response function f; (C) in the pres-
ence of YdiV behaves like a monotonic ultrasensitive switch, that
is, it has a much larger Hill coefficient (H, =~ 12) than the Hill
coefficient (H_ ~3) for f_(C1) (see SI Appendix, Supplemen-
tary Information C for details). Due to this ultrasensitive (steep)
response function, when the mean FIhDC concentration is close
to the threshold (e.g., for strain P4), the distribution of A,/ (As2)
has the largest asymmetry, and there is a significant shift in the
peak of the distribution (Fig. 1.4, Left and B, Left). In the absence
of YdiV, the response function f_(C;) is found to be less steep
(dotted line in Fig. 1D), and the probability distributions are
more symmetric (Fig. 1 A, Right and B, Right). Since we only
used experimental data from three strains (P1, P4, P7) to fit
(calibrate) our model to determine the response functions and
other parameters (such as 7, and 72), we can test the consistency
of our model by applying it to other strains that are not used in
the fitting. In particular, we ran simulations of our model for two
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other strains, P2 and P5, with different promoter strengths but
with all other parameters and the response functions fixed. As
shown in ST Appendix, Fig. S5, the A, distributions for P2 and
P5 obtained from our model agree well with experiments, and
the average values of C are also consistent with the experiments
(SI Appendix, Fig. S4).

The agreements between our model and the experiments not
only validate our model, but, more importantly, they reveal
that the role of YdiV is to create a ultrasensitive (steep)
response of the class 2 activity to the class 1 protein (FIhDC)
concentration.

Memory Effect and Integration over Time. Next, we use our model
to analyze the stochastic gene expression dynamics in the flagel-
lum system. As shown in Eq. 1, there are two noise sources for
the class 2 activity A: the intrinsic noise 8, in the gene expres-
sion process and the extrinsic noise due to fluctuations of the
FIhDC concentration C;. From our model, the mean class 2 pro-
moter activity averaged over the intrinsic noise can be written in
the following integral form:

W)= [ ce-vn@ene, B

where G(t—t')=7; ' exp[—(t —t')/7] is the integral kernel
(Green’s function) that decays with the timescale 7. Eq. 3 means
that A,(t) depends on the values of Ci(t') in a time window
t — 12 <t' <{; that s, there is a memory effect. Given that C;(t)
varies with a timescale 71, the strength of this memory effect
depends on the ratio of the two timescales 72 /71. For 72 /11 <1,
the kernel G(t —t') = &(t — t') and (A2(t)) = f;(Ci(t)); that is,
the class 2 activity depends on the instantaneous level of class 1
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protein € (t) with negligible memory effect. However, if 7, /1, >
1, the memory effect becomes significant. In the limit 72 /7 > 1,
(A2(t)) = (£(C1)) ¢, = [ fs(C1)P(C1)dCy becomes a constant
independent of the instantaneous FIhDC level Cy(t) (P(C1) is
the steady-state C} distribution function).

To demonstrate the memory effect, we divide the FIhDC
concentration in equally spaced bins (in log-scale) and then
compute the class 2 activity and FIhDC concentration averaged
within each bin to form the so-called “bin-averaged response
curve” (BARC) for each strain with a different class 1 promoter
strength (see Methods for details on BARC). As shown in Fig. 24,
when 12 > 71, the BARCs for different strains can be shifted
from each other, consistent with experiments. This means that
the class 2 activity is not determined just by the instantaneous
FIhDC concentration; it depends also on its average over previ-
ous times, due to the memory effect. Indeed, as shown in Fig. 2B,
in the absence of memory effect when » < 7, all BARCs
collapse.

When 72 > 71, A2 depends on an integral of the transformed
input signal f, (Ci) over a time window 7, as shown in Eq.
3. This integration effectively averages the input signal in time
and eliminates high-frequency fluctuations as demonstrated in
Fig. 2 C and D, where power spectra for the two cases with
and without integration are shown. The power spectrum from
experimental data is consistent with our model, with 72 = 3.57;
where the power of the spectrum of A3(t) is concentrated in
the low-frequency regime with a similar half-maximum-power
frequency fi/, ~0.002/min as shown in Fig. 2C. For <
(Fig. 2D), the power spectrum is much broader, with significant
high-frequency fluctuations and f;;, =~ 0.008/min that is much
higher than that from experiments. Quantitatively, by compar-
ing BARCs and autocorrelation functions from the model and
those from experiments, we estimate the timescale ratio to be
in the range 2.1 <7 /11 < 3.6 (see SI Appendix, Supplementary
Information F for details).

A YdiV-Mediated Sequestration Mechanism for Filtering. So far, we
have used our model to explain the steady-state distributions and
dynamics of the noisy single-cell data. In this section, we propose

possible molecular mechanisms underlying our findings, with a
focus on the role of YdiV in regulating FIhDC signal.

We first briefly discuss possible molecular origins of separa-
tion of timescales. The shorter timescale 7 is most likely related
to the degradation time of the FIhC, and FIhD monomers and
the longer timescale t» are related to the decay time of the
FIhDC-dependent class 2 promoter activation (see Fig. 34 for
an illustration). Since FIhD and FIhC can only serve as func-
tional TF when they form heterohexamer FIhDC, 7 is affected
by the binding affinity of FIhDC to class 2 promoters as well as
stability of the FIhDC complex. The heterohexamer is more sta-
ble than the monomers (35), which is consistent with 7 > 71 as
observed in experiments and our model. It would be interesting
to test the effects of changing 7> experimentally (see Summary
and Discussion for more details).

We now study the role of YdiV in creating an ultrasensi-
tive switch-like response of class 2 gene expression as shown in
Fig. 1D. YdiV is known to have two main effects on FIhDC.
First, by occupying the binding sites of FIhDC, YdiV prevents
the binding of FIhDC to free class 2 promoters (32). Second,
YdiV mediates the interaction between FIhDC and the degrada-
tion complex ClpXP (31, 32). Here, we only consider the effect of
competitive binding on the response function; similar effect may
be achieved by enhancing the degradation of FIhDC, which is
not considered in this study. Intuitively, due to competitive bind-
ing, YdiV can introduce a threshold for FIhDC by sequestrating
FIhDC to prevent it from binding to and activating the class 2
promoters.

To show the qualitative effects of this YdiV-mediated seques-
tration mechanism, we developed a simple model based on
competitive binding of FIhDC by YdiV and the class 2 promoter
as illustrated in Fig. 34 (see Methods for details of the seques-
tration model). In Fig. 3B, the fraction of promoters bound to
FIhDC, which serves as a measure of the class 2 gene expression
activity, is shown as a function of the scaled FIhDC concentra-
tion C,/P:, with P; as the total promoter concentration, for
different values of total YdiV concentration. We can see that
higher YdiV concentrations lead to delayed but steeper response
curves, which agrees qualitatively with the response curves
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Fig. 2. The bin-averaged response curves and the ratio of two timescales 72 /7. (A) Model results for > = 3.57¢. Inset shows the same behavior from
experimental data. (B) Model results for vz = 0.17. We used —YdiV strains here; see 5/ Appendix, Fig. 57 for similar results for +YdiV strains. (C and D) The
normalized power spectra (green lines) from our model for (C) 7 = 3.57 and (D) ; = 0.1 for the P4 strain. The normalized power spectrum (black line)
from experiments (P4) is also shown for comparison. We used 1 = 45 min within the range of C; correlation time estimated from experiments.
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experimental data (the same as in Fig. 1D). (C) Hill coefficient (H) and the half-maximum concentration (K; ;) as a function of the YdiV concentration.

f+ and f- shown in Fig. 3 B, Inset for comparison. A response
curve can be described by its effective Hill coefficient H and its
half-maximum concentration Kj ;,. From the experimental data
and our model, both the Hill coefficient and K, are larger
in wild-type cells than those in the AydiV mutant. As shown
in Fig. 3C, the YdiV-mediated sequestration model reproduces
this general trend, with both H and K, ,, increasing with YdiV
concentration.

The steep response function f, ( C;) suggests that YdiV serves
(approximately) as a digital filter. When the input signal, that
is, FIhDC concentration (C1), is lower than a threshold C*
Kiy;5(Y:) set by the YdiV concentration Y;, the normalized
output f; (C1)/maz(f;) is close to 0. When C)> C*, the
normalized output is close to 1.

One important ingredient in our model is the inhibitory effect
of YdiV on class 2 promoter activity. Therefore, changing YdiV
at a fixed average FIhDC level can modulate the class 2 pro-
moter activity. In particular, the model predicts that the increase
in YdiV levels raises the threshold of class 1 concentration that
needs to be reached to have a nonnegligible class 2 response.
More technically, the constant K/, , increases with the concen-
tration of YdiV. This results in a shift in the class 2 distributions

toward lower mean values for larger YdiV levels. We have tested
this prediction by using flow cytometry to quantify the distribu-
tions of class 2 expression in two strains, ProBY and ProDY (36),
which have higher levels of YdiV expression than in wild type
(see SI Appendix, Supplementary Information E for details of the
experiments). As shown in SI Appendix, Fig. S6, we find that,
when the YdiV level is increased, there is a shift in the class 2
gene expression distributions toward lower values consistent with
our model results.

A Filter-and-Integrate Mechanism for Stochastic Pulses without Feed-
back. Put together, our results show that E. coli uses a combined
filter-and-integrate strategy (mechanism) to control its class 2
gene expression. As shown in Fig. 4, in the presence of YdiV
(left side of Fig. 4), the input signal, that is, the FThDC concen-
tration C'(t) (blue line), which fluctuates relatively fast at a short
timescale 71, first goes through a highly nonlinear ultrasensitive
response function f ( C; ), which serves approximately as a digital
filter that eliminates the FIhDC fluctuations lower than certain
threshold C* set by the YdiV concentration. The filtered signal
f+(Ci(t)) (green line) has a nearly digital stochastic pulse-like
pattern.
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Fig. 4. The filter-and-integrate mechanism for pulse generation. In the presence of YdiV, the FIhnDC concentration C;(t) (blue line), which fluctuates with a
fast timescale =y, is filtered by the inhibitory effect of YdiV. The filtered signal . (C;(t)) (black line), which has a pulse-like pattern, is then integrated over
a longer timescale 2 to determine the class 2 activity Az(t) (red line). In the absence of YdiV, there is no filtering effect, and the resulting A; dynamics is
noisier, with no pulse. Without integration (r; < 1), A; would have many short spikes when the signal is filtered, and it resembles the original noisy signal
(C4) in the absence of filtering. Results presented here are obtained from simulations of our model using parameters fitting the P4 strain.
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The second part of the two-pronged process is to integrate the
filtered signal over a timescale 2(> 1), which gives rise to the
intermittent “strong” pulses in A, (red line). Without the inte-
gration process T, < 71, the A activity would have many short
spikes, too short to complete the flagellar synthesis process. The
integration process acts as a filter in frequency space, as demon-
strated in Fig. 2 C and D, to suppress those FIhDC fluctuations
that are strong in intensity but short in time duration. As a result,
class 2 gene expression is turned on only when there are persis-
tently high levels of FIhDC signal. Due to the same integration
(memory) effect, once turned on, the class 2 expression remains
active for a time duration of ~ m» even without strong instanta-
neous FIhDC signal. This long duration of on time is necessary
for the cell to finish the flagellar synthesis process that lasts for
several generations.

Both filtering and integration in time are critical to gener-
ate the stochastic pulses observed in experiments (19) where A,
alternates between having near-zero activity (quiet) for a long
period and being highly active during a strong pulse that lasts for
a long timescale set by 1 (bottom left in Fig. 4). In the absence
of YdiV, the noisy Ci(t) signal is not filtered, and, as a result,
there is no pulse in A;(¢), which fluctuates continuously (bot-
tom right in Fig. 4). In the absence of integration, A, follows the
same dynamics as the filtered signal f,, which has many short
spikes (bottom middle in Fig. 4).

Predicted Gene Expression Responses to Time-Varying Signals. Now
that our model is fully developed with all its parameters deter-
mined by existing single-cell experiments (19), it provides a
powerful tool to predict class 2 gene expression responses to
more realistic time-dependent signals without any tuning param-
eter. As an example, we use our model to study the responses
of class 2 activity to an increase of the class 1 promoter strength
from a low value po(=p(P1) = 2.6) to a series of higher values
w1 at time ¢ = 0. We find that a cell will turn on the class 2 gene
expression after a delay time ., as shown in Fig. 54. The delay
time 7, varies from cell to cell and follows a distribution P(7,|p1)
that depends on p;. In Fig. 5B, the delay time distributions for
different values of u; are shown. Both the average delay time and
its variance decrease with y; or, equivalently, the average FIhDC
level as shown in Fig. 5C. Responses to other time-varying stim-
uli such as ramps and oscillatory signals can be studied by our
model similarly.

Our results suggest that, even though FIhDC concentration
does not control the class 2 gene expression deterministically,
the filter-and-integrate mechanism allows the cell to control the
timing statistics of the class 2 expression based on the average
FIhDC signal intensity. As shown in Fig. 5C, a higher FIhDC
concentration induces (on average) a shorter and more accu-
rate (smaller coefficient of variation) onset time to turn on the

class 2 genes. Similarly, an elevated average FIhDC level leads
to more frequent occurrence of the transcriptional pulses. These
model predictions can be tested in future single-cell experiments
by using inducible class 1 promoters.

Summary and Discussion

In this paper, dynamics of the class 1 and class 2 promoters
in E. coli flagellar synthesis are studied by using a minimal
stochastic model that captures the essential characteristics of
the underlying system. Applying our stochastic model to a large
single-cell dataset quantitatively shows that the transcriptional
pulses are generated by a filter-and-integrate mechanism without
the need of feedback control. Both the YdiV-enabled filtering
and the memory-enabled time integration are crucial to aver-
age out FIhDC fluctuations in intensity and in time so that
an individual cell can make a “calculated” (informed) decision
on whether to turn on the expensive class 2 gene expression.
This mechanism or a variation of it may be at work in other
pulse-generating systems without feedback. For example, in the
reconstituted SinI—SinR circuit (30), the antagonist Sinl may
play the critical role of the filter (analogous to YdiV) by binding
to and inhibiting the transcriptional regulator SinR (analogous
to FIhDC). On the other hand, while the timescale of the class
2 activity (A2) pulses in flagellar synthesis is provided by the
integration time 73, the pulse timescale in the SinI—SinR sys-
tem may be controlled directly by the timescale of the Sinl
fluctuations (30).

To better understand the feedbackless filter-and-integrate
strategy in E. coli, we compare it with a closely related bacterium
Salmonella, which does have an additional positive feedback
loop in controlling its class 2 promoter activity. As illustrated in
Fig. 6, FliZ, a class 2 protein, can inhibit YdiV in Salmonella
but not in E. coli. This positive feedback loop in Salmonella
leads to bistability in class 2 gene response (37). As a result, the
hysteretic response function in Salmonella f5,;(C1) has two crit-
ical points C}* and Cj (> C}), as illustrated in Fig. 6B. Due to
the bistability, once the FIhDC level goes over the upper crit-
ical level C1 > C} even for a short time, the response signal
fsar(C1) will stay on (green) for a much longer time, as long
as FIhDC level is higher than the lower critical level C; > C}'.
This amplification of the “on” time duration allows Salmonella
to activate class 2 gene expression upon detecting a large-but-
short signal. In contrast, as shown in Fig. 64, the response
function for E. coli, though steep, does not have bistability,
because there is no feedback. As a result, an elevated FIhDC
level over the threshold (C*) for a short time is not enough
to trigger significant class 2 activity, given the large integration
time 7.

Their different strategies may reflect the different purposes
of motility for these two bacteria. Salmonella is a pathogen
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Fig. 5. The predicted responses to step stimuli. (4) Predicted dynamics of C; and A; in response to a time-dependent (step function) stimulus in which
the class 1 promoter strength p is changed at t =0 from a low value pg = p(P1) = 2.6 to a higher value u,. The delay time r; is the time duration from
the stimulus (t = 0) to the onset of class 2 expression, which is defined as the time when A; crosses a threshold A = max(f)/4 (qualitative results do not
depend on the choice of AJ). (B) Distributions of the delay time 7. (normalized by =) for different values of p4. (C) Both the average and variance of =,
decreases with uy or the average FIhDC concentration. The values of u for strains P4 and P7 used in our study are marked for reference.
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Fig. 6. The different gene regulation strategies for E. coli and Salmonella. (A) The E. coli network has the YdiV-mediated inhibition of the class 1 master
regulator (FIhDC) but not the feedback mechanism from class 2 gene. As a result, E. coli has a steep but monotonic response function £ with a threshold
C™; that is, class 2 gene expression is activated (green) when C; > C” or inhibited (red) when C; < C". For an FIhDC signal that passes the threshold C*
briefly, the class 2 activity is only turned on for a short time, which is not enough to start the flagella synthesis, given the long integration time +, for class 2
gene activation. (B) In Salmonella, there is a feedback (blue line) from a class 2 protein (FliZ) to suppress the inhibitor YdiV. This feedback mechanism leads
to a bistable (hysteretic) response of class 2 genes in the range ¢ < C; < C;;. As a result, a brief period of elevated FIhDC concentration over the (upper)
threshold C; can cause a prolonged class 2 gene activation as long as Cy > (', which can lead to flagella synthesis.

and activates the flagellar gene expression cascade in nutrient-
rich conditions. A short pulse of strong stimulus from the host
may trigger the flagellar synthesis process. This aggressive strat-
egy may be optimized for host colonization and infection. In
E. coli, however, flagellar synthesis is activated in nutrient-poor
conditions for the purpose of foraging and searching for nutri-
ents. Therefore, E. coli may adopt a more prudent (filter-and-
integrate) strategy that only triggers the expensive flagellar syn-
thesis process when the cell experiences persistent poor nutrient
conditions.

Our current analysis opens up a few directions for future inves-
tigation. Experimentally, effects of the filter-and-integration
mechanism may be tested by perturbing the two key factors,
for example, by tuning the strength of the interaction between
FIhDC and class 2 promoters (32, 38) or by reducing the effective
concentration of YdiV by adding Salmonella FIhC known to have
weaker affinity for E. coli promoters but the same affinity for
YdiV as E. coli FIhC (39). It would be highly informative to mea-
sure single-cell gene expression dynamics of Salmonella in the
mother machine as done for E. coli (19), to understand its gene
regulation strategy quantitatively. In our current model, YdiV
level is assumed to be constant as we focus on the long timescale
(low frequency) dynamics of the system. However, in the high-
frequency regime, the A, power spectrum from experiments fol-
lows P(f)=f~! (f is the frequency), which decays slower than
the power spectrum from our current model with a fixed YdiV
level (SI Appendix, Fig. §10). A similar 1/f noise spectrum was
observed in flagellar motor switching dynamics (40) and was sub-
sequently explained by considering fluctuations of the response
regulator CheY-P in a single cell (41). It would be interesting
to include dynamics of YdiV in our model to explore whether it
also leads to the observed 1/f spectrum in the high-frequency
regime. Furthermore, to fully understand how the class 2 gene
expression response depends on YdiV, molecular details of the
FIhDC heterohexamer complex formation, its binding (unbind-
ing) to DNA, and its degradation mediated by YdiV need to
be considered in addition to the YdiV-mediated sequestration
studied here.

Finally, our work here demonstrates that system-level stochas-
tic modeling augmented by quantitative single-cell measure-
ments for different strains and mutants provides a powerful tool
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to decipher principles of gene regulation from inherently noisy
single-cell data. This tool becomes necessary when dealing with
complex gene regulatory circuits such as the full bacterial flagel-
lar gene expression cascade with multiple feedback controls. The
general system-level stochastic modeling approach with coarse-
grained variables that can be directly compared with experiments
should be applicable to study stochastic expression dynamics in
other gene regulatory systems with or without feedback (23-26,
30, 42).

Methods

Simulation of the Stochastic Differential Equations. For the numerical
simulation of the stochastic equations, we write Eq. 2 in discrete form,

At
AC =—(C — p}T— +’Tv]C1 v 2Aq AL, (4]
1

where -, is a stochastic variable following a Gaussian distribution N0, 1].
We let vy =1 to set the timescale, and the time step At =0.004+. The
discrete form of Eq. 1is

T
AA; = —(A; — f,(Cﬂ);&t +y8 v 2A.m At, [5]
where g is a Gaussian random number as ~,,.

Bin-Averaged Response Curves and Flatness. To obtain the BARCs, we divide
the full interval 10~" < C; < 10? into 20 logarithmically spaced bins and cal-
culate the average of class 1 concentration and class 2 activity for all of the
data points in each bin. This bin-averaged class 2 activity versus the bin-
averaged class 1 concentration is the BARC. The BARGs in Fig. 2 are only
shown at those bins that contain more than 5,000 data points, for better
statistics.

Steady-State Solution of the Sequestration Model. Let P, be the concentra-
tion of promoters, C,; be the total concentration of FIhDC, and Y; be the
YdiV concentration. We denote C;; and Gy, as the concentrations of FInDC
that are bound to the promoters and YdiV, respectively. In steady state, the
balance of binding and unbinding reactions leads to C;, = Cy¢P;/Cis + K,
and Ciy = CyfY:/Cip + Ky, where K, and K, are the dissociation constants
of FIhDC to the promoters and YdiV, respectively. Cs(=C; — Cip — Ciy)
is the free FIhDC concentration, and it satisfies the following equation
(conservation of FIhDC):

CyPy
Cir +Kp

CirYe
Cir + Ky

Cir + =G, [6]
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which can be solved to determine C;; as a function of P, C;, Y, K, and K.
The fraction of FIhDC bound promoters is Cip /Py = Cy¢/(Kp + Cy¢), which is
used as a measure of the class 2 activity. The dependence of Cy5 /P; on C; /P,
is plotted in Fig. 3B. Parameters K, /P, = 102 and Kp/Py=10"" are used in
Fig.3Band C.

Data Availability. All study data are included in the article and 5/ Appendix.
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