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Abstract
The controlling factors that underlie the growth of tumors have often been hard to identify because of
the presence in this systemof a large number of intracellular biochemical parameters. Here, we
propose a simplifying framework to identify the key physical parameters that govern the early growth
of tumors.Wemodel growth bymeans of branching processes where cells of different types can divide
and differentiate. First, using this process that has only one controlling parameter, we study a one cell
typemodel and compute the probability for tumor survival and the time of tumor extinction. Second,
we show that when cell death and cell division are perfectly balanced, stochastic effects dominate the
growth dynamics and the system exhibits a near-critical behavior that resembles a second-order phase
transition.We show, in this near-critical regime, that the time interval before tumor extinction is
power-law distributed. Finally, we apply this branching formalism to infer, from experimental growth
data, the number of different cell types present in the observed tumor.

1. Introduction

Over the last several decades there have been series of
models that characterize the growth of cancerous
tumors. However, these models use a large number of
parameters, which makes the identification of the
principles that govern the growth intractable. The
difficulty of modeling tumor growth is also com-
pounded with the fact that a wide array of different
situations have to be taken into account: the type of
cancer, the stage of the illness, the type or shape of
tumors, and the different cell types that constitute the
tumor. For all these reasons, methods used to model
tumor growth vary widely and depend on these
specific situations. Similarly, mathematical tools differ
greatly from one model to another, and some
approaches use partial differential equations to model
the tumor growth as a continuous mass [1, 2], while
others use a more agent based approach where each
individual cell is a discrete object [3–6] (some even do
a mix of both [7]). Some models use continuous time
while others use discrete intervals built from a fixed
cell division time [4, 8]. Overall, the real challenge of
theoreticalmodeling lies in reproducing quantitatively

the behavior of a tumor growth without using too
many parameters to make the computational
approach tractable. Consequently, a balance needs to
be found between using a large number of parameters
with the risk of over-fitting the experimental data, or
too few, a condition under which key features of the
system can be missed. Here, we provide a unified view
that aims at identifying the minimum number of
parameters that underlies early tumor growth.

For sake of simplicity, our study will focus on one
class ofmodels of tumor growth: discrete time branch-
ing processes. In these models, at given time steps, dif-
ferent cell types can divide, differentiate or die. In this
paper, we will not consider any physical or biochem-
ical interactions between cells and the fate of each cell
at each step will be chosen regardless of its past, which
is the signature of a memoryless system. Such simple
models have been used to describe recent exper-
imental data with single cell resolution [9, 10]. As we
will show, however, it is possible to achieve the same
level of prediction with much fewer parameters. We
will first demonstrate that the branching model used
in [9] can be reduced to one cell type to reproduce the
key properties observed in the experimental system.
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Using this simpler model allows us to identify a con-
trol parameter. We find for a specific value of the key
control parameter a behavior similar to that of a sec-
ond order-phase transition, at which the average time
for tumor extinction diverges. Finally, we will extend
our model to several cell types [9] and we will argue
that our formalism allows us to predict from the
growth rate the number of distinct cellular types pre-
sent in growing tumors.

1.1. Using branchingmodels
We start by characterizing a branching model
(figure 1(a)) that was used to explain clonal size
distributions in skin tumors [9]. The model considers
three cell types: stem cells, progenitor cells and
differentiated cells: (i) differentiated cells cannot
differentiate further and eventually die off with a
constant rate (once a week in our model). (ii) Stem

cells can divide into stem cells or differentiate into
progenitors. (iii) Progenitors divide into progenitors
or differentiated cells. We model these different cell
types by implementing two categories of cell divisions:
symmetric divisions (produces two cells of the same
kind) and asymmetric divisions (produces two cells of
different types). Furthermore, according to [9], the
different types of cells do not divide with the same rate:
stem cells divide faster, twice a day, whereas progeni-
tors divide once every two days. Let us note that in this
model, there is no fundamental biological difference
between stem and progenitor cells except that stem
cells are at the top of the hierarchy (more details are
given in the discussion). This model uses four
parameters to control the probabilities of the different
events (a r a r, , ,s s p p) and twomore to control the time
scales at which the different cells operate. Because of
the intricacy of the model, the dynamical behavior of

Figure 1. (a)This diagramdescribes an intricate branching processmodel used in [9]. Thismodel describes the clonal size
distributions of certain tumor cells observed in vivo. The parameters are set equal to: = =a a 0.5s p and = =r r 0.2s p . (b)This
cartoon shows thefirst procedure wewill follow to simplifymodels such as (a). Given a 3-branchmodel where the cells have three
possible fates at each step (division, death and doing nothing), wewant to showwe obtain the same general behavior whenwe reduce it
to a 2-branchmodel where the cell can only die or divide at each step. Plots (c) and (d) illustrate this statement: r is just a delay
parameter, a is the parameter that determines the behavior of the system. (c)Probability for the population size to crossNmax for
different values of r (the 2-branchmodel corresponds to the case r=1). (d)The average time for extinction as well as the average time
to reachNmax (plotted in inset) have similar graphs for the different values of r. For smaller r the delay and these times get longer. (Both
(c) and (d) have been plottedwith = =N N1, 10000 max and using 10000 simulation runs.)
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this system is hardly tractable, and it is therefore
difficult to isolate the role of a single parameter from
the dynamics of the growth. In order to identify the
essential parameters that govern the growth dynamics,
we have reduced their number to a bare minimum
without losing the richness of the behavior observed
experimentally.

We first consider a model that has only one type of
cell (left of figure 1(b)). This model is a discrete time
model: at each time step, there are three possible fates
for every cell of the population: division, no-division
or death. This 3-branch model has only two control
parameters: a and r. The parameter a governs the
probabilities for a given cell to divide or to die. If a=1
(respectively a=0), the probability of death (respec-
tively to divide) is equal to 0. The second parameter r
acts as a delay parameter: it controls how likely the
cells are to remain unchanged instead of dividing or
dying. If r=0, the cells will never divide or die and the
total number of cells will never change. On the other
hand, if r=1, then the middle branch of this
3-branch model disappears and we are left with a sim-
ple one-parameter 2-branch model (right panel,
figure 1(b)). Our goal is to study the similarities and
the differences between these 3-branch and 2-branch
models. We will show that the simple 2-branch model
captures all of the interesting dynamics present in the
3-branchmodel demonstrating only one parameter, a,
controls the qualitative behavior of the growth
dynamics.

The first quantity we compute in the 3-branch
model (figure 1(b)) is the average size of a population
of growing cells. If we start from a population of N0

cells and call the average number of cellsNt after t dis-
crete time steps, thenwe have:

= + -N N ra r2 1t
t

0 ( )

From this formula we can see that, if <a 1 2, the
population will die off on average exponentially fast
with time, whereas if >a 1 2 the population will
grow exponentially fast. When =a 1 2, then

+ - =ra r2 1 1 and so on average, the number of
cells remains constant as a function of time (see
appendix B for more details). As we could have
expected, the tipping point =a 1 2 is key to under-
standing the behavior of the system: it separates two
phases of exponential behavior and most importantly
it is the only point where the population growth is not
exponential as observed in experiments of [9] on
benign tumors. We will study this specific regime,
=a 1 2, in more details and discuss its significance

from a biological point of view in the section 2.2. For a
mathematical background on braching processes, see
[11, 12], or [13].

1.2. Introducing amaximumnumber of cells
Before studying the properties of these models in
details, we introduce a maximum number of cells that
we will callNmax. We start off each simulation with an

initial number of cells N0 and we let the population
evolve until one of these two events happen: all the
cells die or the total number of cell reaches Nmax.
While Nmax may seem at first like an arbitrary
parameter, we will see that the general behavior of the
system does not depend on its precise value as long as
we choose it much bigger than N0. There is also a
biological justification to the existence of a maximum
number of cells. When the number of cells is small,
stochasticity of cellular growth has a big impact on the
dynamic of the system and we will see that the total
number of cells can then exhibit very large temporal
fluctuations. On the other hand, once the tumor
reaches a certain size, it will become more self-
sustainable and will no longer die off just as a
byproduct of stochastic effects. For this reason, we will
make the simplifying assumption that once a tumor
reaches our thresholdNmax it will necessarily continue
to grow and reach macroscopic size even if our model
stops being valid for a large number of cells. Further-
more, as size increases, additional effects have to be
taken into account, such as the geometry of the tumor
(see [14]), pressure from surronding tissues (see [15]),
the total amount of nutrients available, etc. Therefore,
a simple branching process is relevant only to explain
the early growth of tumorswith a small number of cells
(atmost 10000 cells in [9]).

2.Numerical study of a one cell type
population

2.1. Probability of survival and average times for
growth and extinction
Using the dynamical rules controlled by the two
parameters a and r of the branching process described
earlier, we let the system evolve from an initial number
of cells N0. We call ‘a run’ of the simulation one time
series of the population growth that spans fromN0 up
to Nmax or to extinction. A large number of different
realizations of these runs are used to compute three
quantities: the probability for the population to cross
the threshold, the time it takes to cross it if this event
happens before extinction of the tumor, and finally the
average extinction time (the average time it takes for all
the cells to die if this happens). To compute the
probability to cross the threshold, we use 10000 runs
and we normalize the number of times the threshold
was crossed by the total number of runs. We use a
similar approach to compute the time to extinction or
the duration before crossing the threshold, the only
difference being that the two average times are
conditional quantities: the specific runs for which the
threshold was actually crossed are used to compute the
time to reach the threshold and the other runs are used
to compute the extinction time.

Figure 1(c) shows the probability to cross the
threshold for different values of r (0.25, 0.5, and 1). Let
us recall that r=1 corresponds to no delay (2-branch
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model) while =r 0.5 and =r 0.25 correspond to the
delayed cases (3-branchmodel). For the three values of
r, the three corresponding curves collapse on top of the
curve directly calculated from the theory of branching
processes (see appendix B). Additionally, figure 1(c)
shows two distinct behaviors: for <a 1 2, the prob-
ability to crossNmax is equal to 0, whereas if a becomes
larger than 1/2, the probability is non-zero. These two
distinct dynamics reflect two different biological beha-
viors: if a is smaller than 1/2, the tumor will never be
able to grow to a macroscopic size. By contrast, if a is
larger than 1/2, then the tumor has a good chance to
survive, and under this condition it will grow expo-
nentially fast. Importantly, =a 1 2 is a very peculiar
point that separates the two latter regimes for which
the system behaves in completely different manners.
We will give more details on what happens when the
system is exactly on this near-critical point =a 1 2 in
the next section.

Figure 1(d) shows the average extinction time as
well as the average time to cross the threshold (plotted
in inset in semi-log scale). Both plots show that the
smaller r, the longer it takes for the population of cells
to die off or to cross the threshold. This result supports
the idea that r acts as a delay parameter: the smaller r,
the longer the delay and therefore the longer the two
times get. But the shapes of both plots stay relatively
unchanged for the different values of r. Let us note that
a similar result holds if we plot the variance of the time
for extinction as a function of a for different values of
r: a is the important parameter, r only shifts the curves.
We can intuitively understand the shape of the extinc-
tion time: for a smaller than 1/2, the cells have a small
probability to divide so the extinction time is very
small (the population size decreases exponentially fast
in this case). For a larger than 1/2, the population
grows exponentially fast (the chance of division being
larger than the chance of death) so if extinction hap-
pens, it must happen very early during growth, right at
the beginning before the exponential growth kicks off.
Therefore, for a larger than 1/2, the extinction time is
also very small. The interesting behavior happens
when a is very close to 1/2: in this case the system is
fluctuating between growing and dividing, therefore
the associated extinction time tends to be very long. In
figure 1(d) the extinction time has a finite value at
=a 1 2. However, if we relax the constraint of max-

imum number of cells, the extinction time becomes
mathematically infinite at =a 1 2 (for more details
see appendix B).

One could wonder how figures 1(c) and (d) would
change if we had used a different value for Nmax or N0

but we show that the shapes of these curves do not
change as long asNmax is large enough compared toN0

(supplementary figure 1). Therefore, we have shown
that out of the four parameters of our system, a r N, , 0

and N a,max is the only parameter that governs the
qualitative dynamics of tumor growth.

2.2.Detailed study of the near-critical behavior
at =a 1 2
In the previous section, we have noted that under the
condition =a 1 2, the system exhibits a unique
behavior, (figures 1(c) and (d)). Interestingly the
authors of [9] also chose this point to model their
experimental data (division and death are perfectly
symmetrical both for stem and progenitor cells). For
these reasons, we will now present more numerical
results to provide a detailed analysis of the system
dynamics at this point. Instead of characterizing the
system mean behavior, we now turn to the stochastic
growth of individual tumors. In this section, N0 is set
equal to 1 and Nmax to 10000. Figures 2(a) and (b)
show some typical simulation runs (the plot of the
total number of cells in the tumor as a function of the
discrete time step) obtained for different values of a.
When a is smaller than 1/2, for each run we expect the
tumor to go extinct very quickly (probability to survive
is equal to 0, typical run figure 2(a), inset). When a is
larger than 1/2, many tumors will go extinct right at
the beginning of the growth (just like the inset of
figure 2(a)) and for the others they will grow exponen-
tially (inset of figure 2(b)). Interestingly, for =a 1 2,
most of the runs will look like the ones for a smaller
than 1/2, but in rare instances, the system will take a
very long time either to go extinct (figure 2(a)) or to
reach the threshold (figure 2(b)). The probability for
these events to occur is very small: the probability for
the system to reachNmax is approximately

N

1

max
and the

probability for a run to take a time T to go extinct is
approximately

T

1 (see supplementary figure 2 and

appendix B for more details of the theory). But this
probability drops to nearly zero as soon as ¹a 1 2.
Therefore, even though these long runs remain
unlikely, they still occur enough tomake both the time
to extinction and the time to reach Nmax diverge at
=a 1 2 as illustrated infigure 1(d).
To further study the observed fluctuating behavior

of the system at =a 1 2, we plotted (figure 2(c)) the
average number of individual cell deaths and divisions
before extinction as a function of a. This number of
individual events (divisions and deaths) is not linked
in any simple way to the actual time the system takes
before extinction (number of discrete time steps). The
advantage of introducing this new quantity, however,
is that it can be computed analytically if we remove the
threshold number of cells Nmax. The details of the
computation are shown in appendix B. We find that
this number of events diverges at the point =a 1 2
and hereby explains why the time to extinction is also
infinite at =a 1 2.

Lastly, the plots of figures 2(d) and (e) show the
distribution of the extinction times for different values
of a (0.4, 0.5, 0.6). Our model uses discrete time steps
so we can only consider the probability for the extinc-
tion to occur at a given time which we write P Time( ).
These plots were made with = =N N1, 100000 max
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and 106 simulation runs. We find that for =a 1 2,
the extinction time is power law distributed (straight
line in log-log, see figure 2(d)). We have determined
the slope by first plotting in inset a cumulative dis-
tribution that has a slope of a = -1, whichmeans the
underlying distribution has a slope−2:

µP Time
1

Time2
( )

In computing the average time for extinction (without
anNmax), we obtain an expression proportional to:

å å= = ¥
=

+¥

=

+¥T

T T

1

T T1
2

1

This result is consistent with the infinite extinction
time that we previously discussed (for details, see the
appendix B). In contrast, in figure 2(e), for =a 0.4
(main plot) and for =a 0.6 (inset), the distribution is
exponentially distributed. This result is consistentwith
a finite extinction time when ¹a 1 2 (if we write the
same sum in this case, it will converge to a finite value).
To summarize, we found a drastically different beha-
vior when =a 1 2, for which, there is no typical time
scale for the extinction of the tumor while as soon as

¹a 1 2, the distribution becomes exponential and
therefore it decays at fixed rate.

The observed long individual runs, diverging
number of events, and power law distributed extinc-
tion time lead us to think that there is a link between
the dynamical behavior of our system and second
order phase transitions in physics. Taking the example
of the ferromagnetic/paramagnetic phase transition,
we know that the spontaneous magnetization
becomes suddenly non-zero when the temperature
goes below the critical temperature. This result is qua-
litatively similar to the probability for crossing Nmax

(figure 1(c)) that suddenly becomes non-zero when a
crosses 1/2. Furthermore, in the case of second order
phase transitions, we know that there is a correlation
length that diverges at the critical point. Similarly, in
our case the number of time steps of the individual
runs diverges (see plot 1d or 2a, 2b, 2c). This analogy
between our simple branching model and phase tran-
sitions has actually already been worked out using a
percolation model on the Bethe lattice (which is
equivalent to a binary tree for a coordination number
of z=3), see for instance [16].

Figure 2. (a)Weplot a simulation runwhere the population takes a very long time to die off at =a 1 2. Even if this event is not very
likely at =a 1 2 (about one chance out of 6000), its probability of happening drops to zero as soon as ¹a 1 2. In that case, when the
extinction happens, it happens very fast (see inset plot for =a 0.4). (b) Similar to (a) but for a run that reachesNmax. This takes a very
long time and is not very likely when =a 1 2 but it goes exponentially fast when >a 1 2 (see inset plot for =a 0.6). (c)Average
number of events (number of individual deaths and divisions taken together). (d)To get a further understanding of the system,we plot
the distribution of the time of extinctionmeaning that on the y-axis we have the probability p Time( ) for the population to go extinct
at that time. For =a 1 2, the time of extinction is power law distributed (straight line in log-log).We have plotted in inset the
cumulative distributionwhich has a slope of a = -1meaning the distribution has a slope of -2 (in log-log). (e)The distribution is
exponential for =a 0.4 (straight line in semi-log). =a 0.6 is shown in inset (we obtain the same plot as for =a 0.4). Both plots (d)
and (e)were donewith 106 simulation runs.
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3.Multiple cell type population

We now wish to extend our approach to a more
elaborate branching model where many different cell
types are present just as in [9]. Thanks to our previous
results, we know that the middle branch controlled by
r does not impact the general behavior of the system.
Therefore, we will no longer include it in our model
and consider that at every time step, each cell will
either die or divide. The model of [9] also contains
different time scales for the division of the different
types of cells, but we will make a simplifying assump-
tion and consider that all the cells divide according to
the same effective time scale that encapsulates all the
other time scales. Mathematically, growth will be a
polynomial function of time and this additional
simplification does not change the degree of the
polynomial (see the last section of appendix B formore
explanations). The most general model is shown in
figure 3(a): it consists of stem cells, n levels of
progenitor cells and differentiated cells. Themodel has
in total +n 2 parameters: a0 controls the probability
for the stem cells to divide, a1 through an control the
division of the progenitors and one more parameter d
for the death rate of the differentiated cells. Once

again, the fact that we choose to call the first level of
dividing cells stem cells and the n other levels
progenitor cells is merely a convention and has no
biological meaning in the model. However, the fact
that stem cells are at the very top of the hierarchy
means that they give rise to many more cells than the
progenitors.

Let us note that in contrast with existing models
such as [17], ourmodel is stochastic, whichmeans that
all the cancer cells can give birth to an arbitrary num-
ber of descendants. In the model of [17], only the can-
cer stem cells have a stochastic fate, all other cancer
cells in the model give birth to a deterministic number
of descendants. We chose this stochastic approach
because it is the one used in [9] to reproduce exper-
imental data and also it allows us to infer the number
of cell types in the growing tumor (the number of pro-
genitor levels).

First, we compute the average growth of a popula-
tion that starts off with stem cells and no progenitor
cell or differentiated cell. By average growth we mean
the average of the sum of all the different types of cells
in the population. A full summary of the different
regimes of growth is given in appendix B in the case of
a one progenitor level model. In order for the

Figure 3. (a)Amultiple cell typemodel that consists of stem cells, n levels of progenitor cells and differentiated cells. In the case of a
non-exponential growthwhere all the ai equal 1/2, themean growth of each type of cell is a polynomial given by the equations in (a).
Themean growth of thewhole populationwill therefore be a polynomial of the n-th degree, n being the number of progenitor levels.
Comparison of branchingmodels with different numbers of progenitor levels to themodel of the paper [9] in (b) and to experimental
data of the same paper in (c) (all numerical plots donewith 10000 simulation runs and =N 10 ).We see thatmodels with different
number of progenitors have different slopes in log-log. (b) shows that themodel of the paper [9] that has 1 progenitor level butmore
parameters falls very close to our simple 1 progenitormodel. (c) is the same plot as (b) except that we compare directly the data of [9] to
ourmodels. As expected, we see that the experimental data has the same slope as our 1 progenitormodel.
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population not to grow exponentially fast, all the ai
have to be smaller or equal to 1/2. If some are larger
than 1/2, the average growth will be an exponential
with rate a a2 , being the largest ai. If an ai is smaller
than 1/2, then the corresponding type of cell will die
off exponentially fast and the growth will be domi-
nated by the other types of cells. Ignoring the cases of
exponential growth or decay, we will therefore con-
sider the specific condition for which all the ai equal 1/
2. In this case, the average growth of each type of cell is
polynomial and is given by the formulas on figure 3(a).
The growth of the total population is a polynomial of
the n-th degree, n being the number of progenitor
levels. This result is potentially powerful as it should,
in principle, allow us to predict the number of pro-
genitor levels just by characterizing the average growth
of the system. Let us also note that the differentiated
cells, because they cannot divide, never change the
type of growth (exponential or polynomial) regardless
of the value of d (if one models a system where the dif-
ferentiated cells do divide, then a polynomial growth
of degree n corresponds to n-1 progenitors levels plus
the dividing differentiated cells). Finally, we have plot-
ted in figure 3 of the supplementary information the
three quantities discussed in section 2 (probability of
crossing the threshold, time of extinction and time of
crossing the threshold) for the model of figure 3(a) for
n=1. We obtain behaviors similar as in figures 1(c)
and (d).

In the branching model of [9], the authors use a
one progenitor level model with = =a a 1 2,s p

= =r r 0.2s p , see figure 1(a) (notice that =a as 0 and
=a ap 1, we have chosen to rename these parameters

just to be able to consider a model with more levels of
progenitors). The d that we introduced on figure 3(a)
is the death rate of the differentiated cells: it is equal to
one cell a week in the model of [9]. We already know
from our previous results that we can ignore the value
of r r,s p and d. Interestingly both as and ap are set equal
to 1/2 which means the system must be tuned to the
polynomial regime (regardless of the values of all the
other parameters). Our goal is now to test on this see-
mingly complicated branching model our reductive
method to predict the number of progenitor levels
used by the model. We will compare this model to
three other models each with a different number of
progenitor levels (0, 1, 2) and with very simple para-
meters: all ai equal to 1/2 and =d 1 2 (here the value
of d is chosen arbitrarily as we know that it does not
impact the growth of the system). We numerically
compute the average number of cells after 3, 10, 30,
100, 300 time steps for each of the 4models. Here each
run of the simulation starts from one stem cell and
stops after 3, 10, 30, 100 or 300 time steps. We use
10000 simulation runs to compute these averages.

The results are shown in figure 3(b). In order to
clearly show the different degrees of the polynomial
growth, we have chosen a log-log scale. After about 10
time steps, we see that the plot discriminates well

between three types of polynomial growth: a constant
growth (straight line), a linear growth (slope 1), and a
polynomial of degree 2 (slope 2). The first time steps
are not very meaningful as the number of cells is too
small to accurately observe the polynomial growth.
Therefore we find that the model of [9] that has one
progenitor level and large number of parameters falls
very close to our simple one progenitor levelmodel.

Finally, we now apply our method directly to the
experimental data of [9]. The data available from this
paper is the clonal size distributions at different times,
which is a proxy for the number of clones (a popula-
tion of cells that all came from one mother cell) of dif-
ferent size at distinct times (see figure 2(e) of [9]). We
average those numbers for each time point to get an
average tumor size after 6, 12, 18, 28, and 48 time
steps. We then run numerical simulations (starting
with =N0 one stem cell) to generate the same data for
our different models and we plot the results along side
with the experimental data. The data set clearly shows
the same slope in log-log scale as the simple one pro-
genitor level model.We observe a shift between exper-
imental and theoretical curves and this is because in
the experiment some tumors start from one stem cell
and some from one progenitor cell while in our num-
erical simulation all the runs start from one stem cell.
In order to get a perfect fit, the authors of [9] explain
that one must start from a stem cell in roughly 20% of
the cases and from a progenitor the rest of the time.
The strength of ourmodel is that evenwithout the pre-
cise knowledge of the initial conditions it is still possi-
ble to show that there are no more than two types of
dividing cells, stem cells and progenitors. This same
conclusion is supported by thefindings of [9].

4. Conclusion

In summary, we have shown that in branching
processes modeling tumor growth the parameter that
controls the balance between the probabilities of
division and death of the cells is the only relevant
parameter to describe the qualitative behavior of the
system. We have also shown that in estimating
fundamental quantities that includes probability of
crossing Nmax, time to cross Nmax, time to extinction
as a function of a, the plots obtained always have the
same shapes regardless of the values of the detailed
parameters of the models (number of cell types, delay
r, time scales, etc). We have also seen that the system
behaves like a phase transition system when the
probabilities of cell division and death are perfectly
balance ( =a 1 2). At this critical point, the fluctua-
tions of the number of cells become very large and
there is no typical time scale for the time of tumor
extinction. In the case of amultiple cell typemodel, we
studied how the properties of the critical point could
be used to predict the number of different cell types.
We would like to stress the fact that the goal of our
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paper was not to study the properties of the most
complicated branching models (see for instance
[11, 12], or [13]); rather we hoped to find the simplest
model possible that was still rich enough to explain the
biological data of [9].

Let us now briefly discuss the biological implica-
tions of all our results. In all the branching processes
we considered, non-exponential growth only happens
for a very specific value of the parameters: when divi-
sion and death are perfectly balanced ( =a 1 2).
However, such a fine-tuned value is an unrealistic
hypothesis because of the presence of inherent noise in
biology and therefore a parameter can never be exactly
equal to fixed value. But if we assume that a follows a
probability distribution centered around =a 1 2, the
parameter would spend as much time below as above
the fixed value 1/2, and then the system will have the
same behavior as when =a 1 2. The only require-
ment is that the added noise must be independent of
the time step and with no correlations between cells
(see the last section of appendix B). A more radical
solution would consist in introducing a feedback loop
in the system in order to maintain the parameters at
the desired fixed value. This approach has been stu-
died in [18] and [19] for simplemodels. The limitation
of this latter approach is that there is no guarantee that
the results will hold for any type of feedback loops.
Nevertheless, it seems that such branching models can
be used at the critical value to predict the (non-expo-
nential) behavior of a population of cells like in [9]
or [10].

Finally, our model that allows us to predict the
number of different types of dividing cells from exper-
imental data could prove useful in the cancer stem cell
debate [20]. The existence of cancer stem cells is still
being debated and even the exact definition is unclear.
This problem is closely linked to the epithelial-
mesenchymal transition that has been extensively stu-
died (see for example [21, 22], and [23]). At first, can-
cer stem cells were just defined from an experimental
point of view as cells that could produce a whole
tumor by themselves when introduced in mice. Some
computational papers consider cancer stem cells as
regular dividing cells that divide faster than the average
([9] or [10]) while others consider them as a slow
cycling population that stays roughly constant [4]. The
strength of our result is that we can estimate howmany
levels of dividing cells are present in a growing tumor
without a precise knowledge of the actual parameters
used (which are subject to much debate). From the
data of [9], we confirm the hypothesis that not all the
dividing cells of the tumor are equivalent: there are
two types of dividing cells, stem and progenitor cells
and the stem cells are those that really drive the growth
of tumors.

Lastly, we point out that our approach is not solely
restricted to cancer cells: our results hold for any other
biological systems whose growth can be described by

branching models, such as those found in stem cell
research or development (see [12, 24] and [25]).
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