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2 Supporting Text

2.1 Example Growth Curve

An example growth curve is shown in Figure S1.

0 100 200 300 400 500
10−3

10−2

10−1

time (minutes)

A
bs

or
ba

nc
e 

at
 6

00
 n

m

Figure S1: Growth Rate Measurement. Time series of A600 vs. time. Solid line,
fit to exponential function. Dashed lines, region of exponential growth. Growth
rate is given by the slope of the line.

2.2 Statistical Framework for Drug Combinations

The ultimate goal of our analysis is to establish a predictive relationship be-
tween the effects of small drug combinations (1- or 2-drug combinations) and
the effects of larger multi-drug combinations. Because mechanistic models for
large intracellular networks are often not tractable, we introduce a statistical
framework which, by construction, associates drug interactions to correlations
between stochastic variables. The model offers one way of establishing testable
predictions by first mapping experimental measurements to moments of a joint
probability distribution. The problem is then reduced to estimating the un-
known distribution, which can be achieved using statistical techniques, such
as entropy maximization, or (in principle) by incorporating other assumptions
about the underlying physical system.

Specifically, we assume that interactions between N drugs can be modeled
as correlations between N continuous stochastic variables, Xi, (i = 1...N), such



that the observed growth of cells (g1,2..N) in the presence of N drugs is given by

g1,2..N = 〈X1X2...XN 〉 (S1)

where brackets represent an expectation value over an ensemble described by
the unknown probability density P (x1, x2, ...xN ). If the variables Xi are uncor-
related, the growth reduces to a product

g1,2..N = 〈X1〉〈X2〉...〈XN 〉 ≡ g1g2...gN , (S2)

which is equivalent to Bliss independence, a common phenomenological model
used in pharmacology to describe non-interacting drugs [2].

We would like to ask whether pairwise interactions between drugs can be
used to predict the effects of larger combinations of drugs. Within the above
framework, predicting effects of drug combinations reduces to estimating mo-
ments of the unknown distribution P (x1, x2, ...xN ) using data on interactions
between pairs of drugs. Therefore, to test our hypothesis, we must estimate
higher-order moments of P (x1, x2, ...xN ) (the effects of a multi-drug combina-
tion) using only the lower order moments (the effects of two-drug combinations).
The question, then, is how does one estimate, without mechanistic assumptions
or a physical model, the unknown probability distribution P (x1, x2, ...xN ) given
only information about some collection of moments of that distribution,

〈fj〉 ≡

∫ b

a

∫ b

a

...

∫ b

a

P (x1, x2, ...xN )fj(x1, x2, ...xN )dx1dx2...dxN = αj . (S3)

Entropy maximization offers one method of solving this problem by choosing
a distribution consistent with known moments but that does not incorporate
additional statistical structure [18, 19, 33].

In what follows, we restrict ourselves for illustrative purposes to the three-
drug case, though the results are easily generalizable to any larger drug combi-
nation. To estimate P (x1, x2, x3), we maximize the entropy, S(P ), subject to
the known moment constrains. The entropy, S(P ), is defined (up to an additive
constant) as

S(P ) = −

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3) log

(

P (x1, x2, x3)

q(x1, x2, x3)

)

dx1dx2dx3, (S4)

where q(x1, x2, x3) is a continuous prior distribution that accounts for an a priori
knowledge gleaned from, for example, physical considerations or experience.
The maximization amounts to minimizing the Kullback-Leibler divergence [35]
between the distributions P and q, subject to constraints on the moments. We
choose the interval [a, b] to be finite and take q(x1, x2, x3) to be a constant,
which is equivalent to assuming a uniform prior distribution. We stress that
our results do not depend on a specific choice of [a, b], as long as some minimal
conditions are met (see below).

To proceed with the estimation of P (x1, x2, x3), we first measured the growth
response to each drug i alone (gi) and to all pairs of drugs, (gij). To predict the
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effects of a given three-drug combination, for example, we measured g1, g2, g3,
g12, g13, and g23. The corresponding constraints on the distribution are simply

〈f1〉 ≡

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3)x1dx1dx2dx3 = g1,

〈f2〉 ≡

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3)x2dx1dx2dx3 = g2,

〈f3〉 ≡

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3)x3dx1dx2dx3 = g3,

〈f4〉 ≡

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3)x1x2dx1dx2dx3 = g12,

〈f5〉 ≡

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3)x1x3dx1dx2dx3 = g13,

〈f6〉 ≡

∫ b

a

∫ b

a

∫ b

a

P (x1, x2, x3)x2x3dx1dx2dx3 = g23.

(S5)

We can use Lagrange multipliers (λ0, h1, h2, h3, J12, J13, J23) to maximize
the entropy S(P ) subject to these constraints, which leads to

P (x1, x2, x3) =
1

Z
exp (h1x1 + h2x2 + h3x3 + J12x1x2 + J13x1x3 + J23x2x3) ,

(S6)
where Z is a constant (related to λ0) that normalizes the distribution. It can
be shown that, in general, the entropy of a distribution calculated in this way
corresponds to the global maximum, if it exists [19],[33].

We have labeled the Lagrange multipliers as hi and Jij in accordance with
notation commonly used for the well-known Ising model, which takes a similar
form [36]. In the context of our drug interaction model, hi encodes the single-
drug growth response and Jij encodes information about deviations from Bliss
independence for a given drug pair, with Jij > 0 indicating antagonism and
Jij < 0 indicating synergy. We call the parameter hi the resilience coefficient
and Jij the drug-drug coupling coefficient between the drugs i and j; they char-
acterize the response to single drugs and to pairs of drugs, respectively (Fig.
S2). Intuitively, the value of the resilience coefficient reflects the cell growth in
response to a given concentration of one drug (Fig. S2). The resilience coef-
ficient decreases with increasing drug concentration. The drug-drug coupling
coefficient, J , reflects, for each drug dosage, the nature of interactions taking
place between two given drugs (Fig. S2). For example, when J is zero, there
exists no drug-drug coupling and the two drugs act independently. When J
is positive, the drug pair is antagonistic and for negative values, the pair is
synergistic.

2.2.1 Growth Rate Predictions and Uncertainties

In practice, we calculate the parameters hi and Jij from experimental data
using a standard numerical technique that involves minimizing a dual space
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Lagrangian [37]. The minimization occurs on a convex surface and can be ac-
complished with any unconstrained optimization algorithm. For each dosage of
a given three- or four-drug combination, we performed the optimization 50 times
(for 3 drugs) or 25 times (for four drugs) starting from random initial conditions
drawn from a uniform distribution on the interval [−0.5, 0.5]. Nonphysical pre-
dictions (g < 0, g > 1) occasionally arise from strongly synergistic or strongly
antagonistic combinations, and these are set to 0 (no growth) or 1 (maximum
growth), respectively. While the minimization should not be prone to errors
due to local minima, we find that fits of similar quality can be achieved using
a range of parameter values; hence, there is some uncertainty in the location
of the true minimum. Taking random initial conditions allows us to estimate
this uncertainty and offer more reliable predictions. All predictions represent
the mean of these trials. Error bars of the growth predictions in Figure 2 are
±2σ, with σ the standard deviation of the distribution of trials. Standard errors
of the mean, which are between 5 and 8 times smaller, could be used instead
to give a true estimate of the error associated with each prediction, but they
leave the reader without a sense of σ. Uncertainties in the prediction of drug
interactions, I1..N ≡ g12..N − g1g2...gN , (Figure 3) must incorporate standard
errors from single drug measurements (gi). Therefore, the error bars represent
± 1 standard error of the mean. For distributions of 25 or 50 trials, the standard
error associated with the prediction of the first term (g12..N ) is much smaller
than that of the second term (g1g2...gN). Uncertainties of the drug interaction
predictions are therefore dominated by standard errors in the estimates of single
drug growth rates gi appearing in the second term.

2.2.2 Choosing the State Space

The calculation of the maximum entropy distribution requires a specific choice
of state space, [a, b], for each continuous stochastic variable Xi. First, we note
that if the boundaries are chosen such that [a, b] = [−∞,∞] - that is, the
variables take values on the real line - a (normalizable) distribution of the form
Equation S6 does not exist, because there are no constraints on the variances,
〈X2

i 〉. In practice, this difficulty can be circumvented by choosing [a, b] to be
finite, which puts implicit limits on the variance of each variable. While this
amounts to an additional assumption, we find empirically that the predictions of
higher moments from lower moments do not depend on the choice [a, b] as long
as i) the distribution of the form Equation S6 is normalizable and ii) a solution
to Equations S5, S6 can be found for some choice of Lagrange multipliers. The
specific values of the Lagrange multipliers will of course depend on the choice of
state space, but the relationship between higher moments and lower moments
conforms to that given by Issesrlis’ theorem in all cases where a suitable solution
to Equation 5 is found. We return to this point below.

Figures S3, S4 illustrate the fit of models with different choices of (a, b) to
all two-drug and single drug data. We note that these are not predictions, but
simply fits to examine whether a solution to Equations S5, S6 can be found.
Figure S3 illustrates that choices with (a, b) = (0, b) for b > 0 do not provide
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an accurate description of many of the measured drug interactions; that is, a
valid solution cannot be found. On the other hand, the fit improves significantly
when a < 0 and b > 0 (Figure S4). For sufficiently large |b − a|, the fit again
becomes poor, likely because of the failure of numerical integration over the
increasingly large state space. Hence, for all three-drug calculations, we choose
(a, b) = (−3, 4) (Figure S4, lower left panel), which provides an excellent fit
(R2 > 0.99) to the pairwise data, indicating that a solution to Equations S5, S6
is achievable. This choice is not unique, and other choices (e.g. (a, b) = (−9, 10))
are possible but must utilize more computational resources to calculate integrals
at the same level of accuracy. For similar reasons, we choose a smaller range
(a, b) = (−1, 2) for four-drug predictions to allow for faster computation of the
numerical integrals. The final predictions do not depend on these choices of
state space, but instead only on the measured growth rates for drug pairs and
single drugs. The exact same results are also obtained if we choose the variables
to be discrete ”spin-like” variables, as long as the value of the spin is sufficiently
large (e.g. spin = ±4). In the latter case, the integrals become sums that are
easily calculated.

2.2.3 Example Maximum Entropy Distributions

We illustrate example (marginal) maximum entropy distributions calculated
for the drug combination salicylate, erythromycin, and chloramphenicol in Fig-

ures S5, S6. Figure S5 shows the pairwise, P2(x1, x2) ≡
∫ b

a
P (x1, x2, x3)dx3 ,

and single variable, P1(x1) ≡
∫ b

a
P (x1, x2, x3)dx3dx2, marginal distributions for

the three-drug combination at a given dose of each drug. In this figure, the
concentration of chloramphenicol is 0, so these distributions describe the effects
of salicylate and erythromycin alone (right panels) and in combination (left
panel). Similarly, Figure S6 shows the pairwise and single variable marginal
distributions for erythromycin and chloramphenicol in the absence of salicylate.
Deviations from the uniform distribution ensure that the experimental measure-
ments of pairwise drug interactions (2-body correlations) and single-drug effects
(single variable means) are appropriately described by expectation values of P .

2.2.4 Isserlis’ Theorem Describes Observed Moment Relationships

Empirically, we find that the moment relationships derived from our experiments
are consistent with the well-known Isserlis’ formula [38],

〈XiXjXk〉 = 〈Xi〉〈XjXk〉+ 〈Xj〉〈XiXk〉+ 〈Xk〉〈XiXj〉−2〈Xi〉〈Xj〉〈Xk〉, (S7)

or in terms of the growth measurements,

gijk = gigjk + gjgik + gkgij − 2gigjgk. (S8)

Similar expressions hold for higher order moments. For example,

gijkl = gilgjk + gikgjl + gijgkl − 2gigjgkgl. (S9)
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Isserlis’ equations were originally proven for jointly distributed Gaussian vari-
ables, but they have also been extended to certain classes of non-Gaussian vari-
ables [39]. These relationships can be derived from the maximum entropy re-
sults using first order perturbation theory when the drug-drug coupling is small
compared to the single drug effects; they are exact if the distribution P (x) is
Gaussian. The result (Figure S7) is perhaps not surprising, given that the choice
of finite [a, b] implicitly constrains the variance of the distributions.

Consider, for example, that the same relationship can also be achieved in the
following way. Assume that the variables are constrained such that 〈X2

i 〉 = σ2
i

for some choice of constants σ2
i > 0. Under these conditions, the maximum

entropy distribution for variables defined on the real line is a Gaussian [33].
Therefore, Isserlis’ theorem will describe the moment relationships, and the
result will not depend on the specific choices of σ2

i , as long as they are sufficiently
large that a distribution satisfying all moment constraints exists.

The success of Equation S8 and, more generally, Isserlis’ theorem in pre-
dicting the effects of large drug combinations is, in itself, a striking result. It
suggests that one could arrive at the same predictions by assuming, at the
outset, that the variables Xi come from a multi-variate Gaussian distribution.
Such a relationship could arise, for example, from the Central Limit Theorem
if one could argue that the underlying stochasticity of intracellular networks
contributing to the multi-drug response arises from a sum of independent, or
nearly independent, stochastic variables. This remains an open question for
future work. Nevertheless, in practice, the simplicity of the algebraic expres-
sions given by Isserlis renders the method useful even to those without extensive
computational resources or experience.

2.2.5 Drug With Itself

In pharmacology, Bliss independence is well-known to be a poor model for the
effects of a two drugs with highly similar mechanisms. In particular, it is of-
ten noted that Bliss independence cannot accurately describe an experiment
where a drug is divided into two volumes which are then combined (i.e. the
“interactions” of a drug with itself). Our results extend Bliss independence to
account for interactions between drug pairs, which raises the question of whether
the model can more accurately describe the “interaction” of a drug with itself.
Applying equation 8 to a such a scenario, we have

g(c1 + c2 + c3) =g(c1)g(c2 + c3) + g(c2)g(c1 + c3)+

g(c3)g(c1 + c2)− 2g(c1)g(c2)g(c3),
(S10)

where g(x) is the growth in the presence of a drug at a concentration x. One
solution to this equation is given by an exponential function, which is a reason-
able model for the dose-response curve of many drugs over limited concentration
ranges. However, dose-response curves are typically modeled with a Hill func-
tion, g(x) = (1 + (x/K)n)−1, which is consistent with our single-drug data but
is not a solution of equation S10. To explore the usefulness of equation S10 for
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describing typical Hill-like dose-response relationships, we consider Hill func-
tions with Hill coefficients of n = 1, n = 2, and n = 5 (and K = 1 without loss
of generality). We then compare the predictions of equation S10 and the pre-
dictions of Bliss independence (given by g(c1 + c2 + c3) = g(c1)g(c2)g(c3)) with
the true Hill function (Figure S8). The pairwise model significantly improves
upon Bliss independence, especially when Hill coefficients are near 1, but it can
not perfectly capture steep features of the dose-response curve for larger n and
high drug dosages. These results suggest that the model may lose accuracy at
high dosages when drug combinations involve drugs with identical mechanisms
of action and steep dose-response curves. In practice, we find that dose response
curves rarely have n > 2, and furthermore, the method works well even when
drugs have similar–but not identical–modes of action (See Dox-Ery-Linc combo
in main text, Figure 2). Therefore, this theoretical limitation is unlikely to be
relevant in most practical situations.

2.3 Failure and Success of Bliss Independent Model

While our pairwise model performs significantly better, on the whole, than the
Bliss independent model, we found that some combinations of three drugs may
nevertheless be appropriately modeled with Bliss independence. Figure S9 com-
pares predictions from Bliss independence (left) with those from the pairwise
model (right) for two 3-drug combinations. In the top drug combination (Cm-
Ofl-Sal), the pairwise approximation significantly outperforms the independent
model. On the other hand, in the lower panels (Dox-Ery-Linc), the results from
both models are highly correlated (r ≈ 0.95) and both provide reasonable fits to
the data. The latter result is particularly interesting given the strong interac-
tions that take place between doxycycline-lincomycin (strong suppression) and
doxycyline-erythromycin (strong synergy) when used in pairs (see Figure 2).

2.4 Akaike Information Criteria and Model Selection

To statistically compare the pairwise model with the independent model, we
use standard model-selection techniques [40] (see Table S1 for results). Specif-
ically, we assume that the experimental errors are independent and Gaussian
distributed with unknown variance σ2. We confirm approximate normality of
residuals in Figure S10. We then calculate for each model the Akaike Informa-
tion Criteria, which is given by

AIC = −2 log(L(ĉ|y)) + 2n (S11)

where log(L(ĉ|y)) is the log likelihood function, y is the data, c is maximum
likelihood estimate of the free parameters of the model (in this case, σ2), and
n is the number of free parameters (n = 1 for both models, corresponding
to the unknown error variance). The AIC is an estimate of the expectation
value of the relative Kullback-Leibler (KL) divergence between the fitted model
and the “true mechanism” generating the observed data. The model with the
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lowest AIC value among a set of models is considered the best model in that
it minimizes the KL divergence between the model and statistical mechanism
underlying the data. For independent Gaussian errors, AIC reduces (up to an
additive constant) to

AIC = −N log(σ̂2) + 2n, (S12)

where N is the number of observations and σ̂2 is the maximum likelihood esti-
mate of the variance. In practice, we use a small sample estimator of AIC that
includes a bias correction term

AIC = −2 log(L(ĉ|y)) + 2n+
2n(n+ 1)

N − n− 1
. (S13)

The differences in AIC values between the pairwise model and the Bliss inde-
pendent model can be converted to an Akaiki weight in favor of the pairwise
model,

w =
exp(−δ/2)

exp(−δ/2) + 1
(S14)

where δ ≡ AICpair −AICind. Because exp(−δ/2) is proportional to the likeli-
hood of the pairwise model given the data, the weight w can be interpreted as
a measure of the evidence in favor of the pairwise model as the best of the two
models.

2.5 Predictions of 3-Drug and 4-Drug Effects

Figures S11 - S15 show predictions for three-drug (Figures S11 - S14) and four-
drug (Figure S15) combinations calculated using the maximum entropy distri-
butions (or, equivalently, using Equation S7). Each figure includes heat maps
comparing experimental growth to theoretical predictions (left hand side) as
well as a direct comparison of predictions vs. experiments.

2.6 Combinatorial Experiments Testing 3-Drug Predic-
tions

In addition to exploring the entire space of 3-drug concentrations for the drug
combinations listed above, we have also performed combinatorial experiments to
test the predictions of our model on a broad range of 3-drug combinations, each
at a single dosage. Each combinatorial experiment involves N drugs, each at a
single concentration, D1, D2, ...DN . In each experiment, we test all

(

N
3

)

possible
3-drug combinations and compare the experimental results to predictions from
our pairwise model. We choose N to be 5, 6, or 7 and performed 5 combinatorial
experiments yielding a total of 93 unique 3-drug combinations and 120 unique
dosage combinations.

Table S3 lists all drug combinations, and the corresponding comparisons
between predictions and experiment are shown in Figures S16, S17 (inset, which
includes error bars). The pairwise model performs remarkably well (R2 = 0.95)
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and significantly outperforms the naive independence model (R2 = 0.29), which
demonstrates the need to account for pairwise interactions.

To estimate the frequency of pure 3-body interactions, we also include a his-
togram (Figure S17, main figure) of the statistical deviations from the pairwise
predictions. These deviations, which cannot be statistically explained by the
pairwise approximation, occur when the 95 percent confidence interval of the
difference δ = gexp − gpred, where gexp is the relative growth from experiment
and gpred is the predicted relative growth, does not contain 0. The difference
between the boundary of this confidence interval and 0 is defined to be the
deviation, ∆I3 (units are relative growth rate); this deviation may arise from
pure 3-drug interactions. In 74 of the 120 drug combinations, the deviation is
zero (∆I3 = 0). In the remaining 46 combinations, the deviations (unexplained
drug interactions) are very small (mean= 0.034± 0.005), with the maximum of
∆I3,max = 0.12.
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Figure S2: Experimentally determined growth rates, resilience coefficients (h),
and coupling coefficients (J), of maximum entropy distribution for pairwise
drug interactions. Growth rate data and maximum entropy coefficients for drug
pairs (A) Doxycycline-Erythromycin (synergistic), (B) Doxycycline-Lincomycin
(weakly antagonistic), and (C) Erythromycin-Lincomycin (strongly antagonis-
tic). In each panel, top plots show heat maps of cell growth in the presence
of two drugs. Cell growth is normalized by growth in the absence of drugs.
Warmer colors indicate high growth rates, whereas cooler colors indicate slower
growth rates. Bottom left, resilience coefficients, h, as a function of each drug
in the combination. Decreasing the resilience coefficient, h, corresponds to a
decrease in growth rate. Error bars: standard error of replicates (smaller than
data points). Bottom right, drug-drug coupling coefficients, J , as a function of
drug concentration for each drug pair. J > 0 corresponds to antagonism, J < 0
to synergy, and J = 0 to additivity. 18
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Figure S3: Fitting two-drug Data Using State Spaces with a = 0, b > 0. Upper
left, b = 1, upper right, b = 3, lower left, b = 5, lower right, b = 5. Different
symbols represent growth of cells in response to drug pairs drawn from different
three-drug combinations (Sal-Ery-Cm, squares; Cm-Ery-Tmp, circles; Cm-Ofl-
Sal, upright triangles; Cm-Ofl-Tmp, leftward triangles; Dox-Ery-Linc, stars).
Black lines, line of slope 1 indicating perfect fit. Note that many data points in
the lower right panel fall outside of the range of the plots.
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Figure S4: Fitting two-drug Data Using State Spaces with a < 0, b > 0. Upper
left, (a, b) = (−0.5, 1.5), upper right, (a, b) = (−2, 3), lower left, (a, b) = (−3, 4),
lower right, (a, b) = (−19, 20). Different symbols represent growth of cells in re-
sponse to drug pairs drawn from different three-drug combinations (Sal-Ery-Cm,
squares; Cm-Ery-Tmp, circles; Cm-Ofl-Sal, upright triangles; Cm-Ofl-Tmp, left-
ward triangles; Dox-Ery-Linc, stars). Black lines, line of slope 1 indicating
perfect fit.
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Figure S5: Example Maximum Entropy Distrubitions: Pairwise,

P2(x1, x2) ≡
∫ b

a
P (x1, x2, x3)dx3 (left panel), and single variable,

P1(x1) ≡
∫ b

a
P (x1, x2, x3)dx3dx2 (right panels), marginal distributions for

the three-drug combination salicylate (2 mM), erythromycin (25µg/mL), and
chloramphenicol (0µg/mL). Vertical dashed lines indicate averages 〈xi〉, which
correspond to single drug growth rates gi. Drugs are arbitrarily labeled as 1
(salicylate), 2 (erythromycin), and 3 (chloramphenicol).
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Figure S6: Example Maximum Entropy Distrubitions: Pairwise,

P2(x1, x2) ≡
∫ b

a
P (x1, x2, x3)dx3 (left panel), and single variable,

P1(x1) ≡
∫ b

a
P (x1, x2, x3)dx3dx2 (right panels), marginal distributions for

the three-drug combination salicylate (0 mM), erythromycin (25µg/mL), and
chloramphenicol (1µg/mL). Vertical dashed lines indicate averages 〈xi〉, which
correspond to single drug growth rates gi. Drugs are arbitrarily labeled as 1
(erythromycin), 2 (chloramphenicol), and 3 (salicylate).
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Figure S7: Comparison of Moment Relationships given by Maximum Entropy
and Isserlis’ Theorem: Predictions of growth in the presence of three-drug (3rd
order moments) based on maximum entropy (x axis) and Isserlis’ theorem (y-
axis). Different colors represent different three-drug combinations.
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(solid line) with Hill coefficients n = 1 (left), n = 2 (center), and n = 5 (right).
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Figure S9: Comparison between independent model (left) and pairwise model
(right) for two three-drug combinations: chloramphenicol-ofloxacin-salicylate
(top) and doxycycline-erythromycin-lincomycin (bottom).
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Figure S11: Comparison of Predictions with Experiments for the three-drug
combination Cm-Ery-Tmp.
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Figure S12: Comparison of Predictions with Experiments for the three-drug
combination Cm-Ofl-Tmp
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Figure S13: Comparison of Predictions with Experiments for the three-drug
combination Cm-Ofl-Sal
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Figure S14: Comparison of Predictions with Experiments for the three-drug
combination Dox-Ery-Linc
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Figure S16: Comparison of Predictions with Experiments for the 3-drug Combi-
natorial Experiments. Each number corresponds to a 3-drug combination from
the table at the end of the SI material.
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Figure S17: Histogram of Deviations from Pairwise Predictions. Deviations
from the pairwise predictions occur when the 95 percent confidence interval
of the difference δ = gexp − gpred, where gexp is the relative growth from ex-
periment and gpred is the predicted relative growth, does not contain 0. The
difference between the boundary of this confidence interval and 0 is defined to
be the deviation from pairwise predictions (units are relative growth rate). In-
set: Comparison of Predictions with Experiments for the 3-drug Combinatorial
Experiments. Error bars are ± standard error.
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