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Drugs are commonly used in combinations larger than two for
treating bacterial infection. However, it is generally impossible to
infer directly from the effects of individual drugs the net effect of
a multidrug combination. Here we develop a mechanism-indepen-
dent method for predicting the microbial growth response to
combinations of more than two drugs. Performing experiments in
both Gram-negative (Escherichia coli) and Gram-positive (Staphylo-
coccus aureus) bacteria, we demonstrate that for a wide range of
drugs, the bacterial responses to drug pairs are sufficient to infer
the effects of larger drug combinations. To experimentally establish
the broad applicability of the method, we use drug combinations
comprising protein synthesis inhibitors (macrolides, aminoglyco-
sides, tetracyclines, lincosamides, and chloramphenicol), DNA synthe-
sis inhibitors (fluoroquinolones and quinolones), folic acid synthesis
inhibitors (sulfonamides and diaminopyrimidines), cell wall syn-
thesis inhibitors, polypeptide antibiotics, preservatives, and anal-
gesics. Moreover, we show that the microbial responses to these
drug combinations can be predicted using a simple formula that
should be widely applicable in pharmacology. These findings offer
a powerful, readily accessible method for the rational design of
candidate therapies using combinations of more than two drugs.
In addition, the accurate predictions of this framework raise the
question of whether the multidrug response in bacteria obeys sta-
tistical, rather than chemical, laws for combinations larger than two.
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Combinations of three or more drugs have been studied in
both clinical and laboratory settings as potential treatments

for severe microbial infections (1–4). Drug interactions, in-
cluding those that are clinically beneficial, have typically been
studied using descriptive, rather than predictive, approaches that
quantify the effects of a given drug pair on growth (5–7). For
example, two drugs whose effects on microbial growth counteract
one another, when used in combination, are known as antago-
nistic, whereas drugs whose potencies are significantly increased in
combination are referred to as synergistic. As a result of these
interactions, the effects of drug combinations cannot, in general,
be predicted based on the effects of the drugs alone (7). Al-
though combinations of two drugs have been studied extensively,
little is known about the way in which more than two drugs
combine to yield higher-order effects on bacterial growth, which
is the relevant clinical outcome in treatments of bacterial infec-
tions. Here, we ask if it is possible to understand and to predict
the effects of these larger drug combinations without relying on
specific mechanistic details but rather on principles shared by
a large number of biological systems.
For example, consider a classic three-drug combination of

chloramphenicol (a protein synthesis inhibitor), ofloxacin (a
fluoroquinolone DNA synthesis inhibitor), and trimethoprim
(a folic acid synthesis inhibitor) at the following concentrations:
[chloramphenicol]=1.5 μg/mL, [ofloxacin]=40 ng/mL, and [tri-
methoprim]=0.3 μg/mL. The growth rate of E. coli treated with
each drug alone is about 0.58, 0.47, and 0.39 (normalized by the
growth of untreated cells), respectively. Combining chloram-
phenicol and ofloxacin leads to a growth rate of 0.53, which
is significantly higher than expected from a naive multiplication
of the single drug rates (0.27) and consistent with previously

observed antagonism between DNA synthesis inhibitors and
protein synthesis inhibitors (8). On the other hand, combining
ofloxacin with trimethoprim completely eradicates growth
(growth < 0.01, compared with 0.18 expected from single drug
growth rates), consistent with previously reported synergy be-
tween trimethoprim and fluoroquinolones (9). Finally, the com-
bination of chloramphenicol and trimethoprim leads to a growth
rate of 0.16, slightly smaller than the 0.23 predicted from single
drug growth rates. The effects of all three pairs of drugs differ
significantly from that predicted by multiplication of single drug
effects. Therefore, there is seemingly little hope that such an
assumption of independence will be useful when all three drugs
are combined and the chemical complexity of the problem is
increased. Surprisingly, the growth rate in the presence of all
three drugs (0.11) is equal to the product of single drug growth
rates, suggesting that the drugs act independently. Why have the
previously strong interactions between drug pairs been elimi-
nated when the three drugs are combined, leading to a mixture
of effectively independent drugs? One hypothesis would be that
the net effect of the drug combination arises from compensatory
interactions that can only be measured when all three drugs are
present. Alternatively, the net effect could follow directly from
the accumulation of interactions between pairs of drugs. We wish
to answer this question using a quantitative framework to provide
insight into how the cell integrates signals from larger drug
combinations.
To tackle this question for a wide range of drug combinations,

we develop a mechanism-independent model to quantify the rel-
ative contributions of combined chemical exposure—that is, one-
drug effects, two-drug effects, and, in general, N-drug effects—to
the multidrug growth response. We construct the model using
a common statistical method, entropy maximization, which
ensures that the model does not incorporate unwarranted sta-
tistical structure. We then test predictions of this framework
using two species that represent Gram–negative (Escherichia coli)
and Gram–positive (Staphylococcus aureus) bacteria. This predictive
framework is a potentially powerful tool for studying multidrug
effects, even without knowledge of the underlying network struc-
ture, molecular dynamics, or any other intracellular details.

Results
Response of E. coli to Single Drugs and Drug Pairs. First, we mea-
sured the growth of E. coli in the presence of a single drug and
then pairs of drugs by growing liquid cultures in Luria-Bertani
media. We used a large variety of drugs, including several classes
of protein synthesis inhibitors (with 30S and 50S ribosomal tar-
gets), DNA synthesis inhibitors (fluoroquinolones), folic acid
synthesis inhibitors, and analgesics (Table S1). Using time series
of optical density measured directly from a 96-well plate reader,
we estimated growth with nonlinear least-squares fitting (Methods,
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Fig. S1). We define g1...N to be the measured growth rate of cells in
our experiments exposed to a treatment with N drugs, D1, D2, ...,
DN. All growth rates are normalized by growth rate in the absence
of drugs. To understand the relationship between pairwise drug
interactions and the net drug interaction between more than two
drugs, we first asked whether one can estimate the growth re-
sponse to three or four drugs using only our experimental meas-
urements of single drug, gi, and two-drug, gij, growth rates (Fig. 1).
We model the effect of each drug, Di, using an associated

stochastic variable, Xi. Specifically, we assume that the measured
(normalized) growth rate is equal to the mean (i.e., expectation)
value of that random variable, gi =< Xi>. Similarly, in the
presence of two drugs, i and j, the normalized growth is taken to
be gij =< Xi Xj> and, in general, the normalized growth in
presence of a combination of N drugs, g1...N, equals the mean
value <X1. . .XN> of the product of the Xis. The relevant ex-
perimental observable, growth, is associated with the moments
(or joint moments) of the variables Xi, not to the stochastic
variables themselves. By construction, then, drug interactions are
represented as correlations between these abstract variables. In
this framework, an absence of correlation between variables
Xi and Xj indicates that the drugs do not interact, and therefore
gij is equal to the product of the independent growth rate gi and
gj. In the absence of interactions between the drugs, this statis-
tical model is equivalent to the well-known Bliss independence
model (5, 7) in pharmacology.

Drug Interactions Defined as a Mechanism-Independent Statistical
Problem. To characterize the apparent interactions between drugs
(i.e., synergies and antagonisms), we introduce a probability
density P(x) = P(x1, x2, . . ., xN) that describes the joint distribu-
tion of these random variables. Unfortunately, this probability
distribution P(x) is not directly accessible, although as we will
show, it can be estimated using experimental data. Specifically,
we wish to estimate the probability density P(x) using only the
growth rate data in response to single drugs and drug pairs. We call
this estimate Ppair(x), because it depends only on the interactions

between drug pairs and the effects of the drugs alone. Ppair(x)
provides a picture of how the two-drug interactions would ac-
cumulate if there were no additional drug interactions, such as
those requiring the presence of all three or four drugs. Of course,
Ppair(x) will provide a good approximation to the true P(x) and,
ultimately, to experiments only if the effects of higher-order
interactions (three-drug, four-drug) are negligible.
To estimate Ppair(x) from experiments, we use entropy maxi-

mization (10, 11) (Fig. 1), a well-established statistical technique
that guarantees that Ppair(x) contains only the information from
our one-drug and two-drug data sets (SI Appendix). In this case,
the form of the maximum entropy distribution is given by

PpairðxÞ = 1
Z

exp

 X
i

hixi +
X
i< j

Jijxixj

!

where subscripts label the components of x, and h and J repre-
sent the collection of free parameters determined by the data
(SI Appendix, Figs. S2–S6), and Z is the normalization constant
(i.e., partition function). It is straightforward to determine the
parameters hi and Jij from our measurements of single and pair-
wise drug effects at each dosage (SI Appendix).

Three- and Four-Drug Interactions Arise from Accumulation of
Pairwise Interactions. Using the estimated distribution Ppair(x),
one can easily calculate the expected growth response to a larger
combination of drugs, g1,..N =< X1X2. . .XN>, where brackets
represent an average using the distribution Ppair(x). This pre-
diction would match experimental results only if the net effects
of the drug combination were to arise entirely from the accumu-
lation of pairwise interactions but not from higher drug inter-
actions. To test this framework, we calculated expected growth
response to various combinations of N drugs. We focus on the
n = 3 and n = 4 cases, which are near the upper limit of current
multidrug treatments in clinical settings. We then directly mea-
sured bacterial growth in the presence of these drug combinations

A B

C

Fig. 1. Growth in response to multiple
drugs can be predicted from the growth in
response to those drugs singly and in pairs
using maximum entropy. (A) Schematic
axes showing that the normalized growth
responses of bacteria to pairs of drugs (g12,
g23, g13) are used to predict the normalized
growth response to all three drugs (g123).
We use the three-drug case as an example;
but growth in response to any number (N)
of drugs can be predicted as long as we
know all pairwise responses. (B) We esti-
mate growth in the presence of drugs using
nonlinear least-squares fitting to optical
density time series. For each drug i, we
define a random variable Xi whose expec-
tation value is equal to the growth gi. (C)
We made predictions by first estimating the
maximum entropy distribution, P, using
growth rate data from cells exposed to
single drugs and drug pairs. The distribu-
tion takes an exponential form parame-
terized by resilience coefficients (hi, blue
circles) and drug–drug coupling coefficients
(Jij, pink boxes) that characterize the single
drug response and the response to pairs of
drugs, respectively. The resilience and cou-
pling coefficients are chosen to ensure that
the moments, <Xi> and <XiXj>, of Ppair
match the two-drug growth rate data at
each drug dosage. After determining the
maximum entropy distribution, the N-drug growth response can be predicted by calculating the expectation values of the product X1X2...×N. We find that
these expectation values are related to the moments <Xi> and <XiXj> by simple algebraic expressions (SI Appendix).
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and compared them to our expected results using the estimated
distribution Ppair(x). Notably, the relationship between the N-
drug response and the responses to single drugs and drug pairs—
a relationship governed by the distribution Ppair(x) calculated
from entropy maximization—is well described by simple algebraic
expressions (12) (SI Appendix, Fig. S7). For example, the response
to three drugs (gijk) is given by

gijk = gigjk + gjgik + gkgij − 2gigjgk;

and the response to four drugs (gijkl) is given by

gijkl = gijgkl + gikgjl + gilgjk − 2gigjgkgl

These well-known formulas are fully consistent with our nu-
merical maximum entropy predictions and can be derived from
the famous Isserlis theorem (12) in the specific case when Ppair(x)
is a Gaussian distribution. The simple expressions provide a way
to predict the effect of a drug combination on growth without
using the sophisticated maximum entropy framework. However,
the fact that these simple formulas yield predictions identical (Fig.
S7) to those from maximum entropy calculations guarantees that
they contain no hidden correlations, only correlations from mea-
sured pairwise and single drug effects.
Fig. 2A shows representative data collected from bacteria ex-

posed to various concentrations of the combination of three anti-
biotics, erythromycin, doxycycline, and lincomycin. All three drugs
inhibit protein synthesis, erythromycin by inhibiting translocation
of peptidyl tRNA, doxycycline by disrupting aminoacyl-t-RNA
binding to the ribosome, and lincomycin by inhibiting enzymatic
activity of peptidyl transferase. We previously found that linco-
mycin is antagonistic with both doxycycline and erythromycin,
whereas the latter two drugs are synergistic (Fig. S2). However,
because the mode of action is similar for the three drugs, it is
possible that these mechanisms might interact in a unique way
when all three drugs are present (see also SI Appendix, Fig. S8 for
drugs with identical modes of action). Therefore, it is not clear
whether the overall effect could be predicted solely from the ac-
cumulation of the measured pairwise interactions. Interestingly,
Fig. 2A demonstrates that the pairwise interactions are indeed
sufficient to accurately predict the growth response to the com-
bination of these three protein synthesis inhibitors.
Next, we tested this approach using chloramphenicol, erythro-

mycin, and salicylate. The former two drugs are protein synthesis
inhibitors. The binding of chloramphenicol to its ribosomal tar-
get has been shown to enhance the ribosomal binding of eryth-
romycin (13), and it is therefore not surprising that we found
chloramphenicol and erythromycin to be synergistic when used
together. Salicylate, the active component of the analgesic as-
pirin, is known to be a potent inducer of a multidrug efflux pump
that contributes to E. coli’s resistance to chloramphenicol (14).
Consequently, it is also not surprising that chloramphenicol and
salicylate are strongly antagonistic. Although interactions between
salicylate and erythromycin have not been studied, we found them
to be weakly antagonistic. What happens when the three drugs are
combined together? A priori, one might expect a novel effect
when all three drugs are present. The presence of salicylate
decreases the intracellular concentration chloramphenicol, which
might then decrease the binding affinity of erythromycin in a
manner that depends on the dosages of salicylate and chloram-
phenicol. However, we find that pairwise interactions again yield
accurate predictions of multidrug effects (Fig. 2B).
We found similar results for three additional three-drug com-

binations and also for two four-drug combinations. In all experi-
ments, the predictions from the pairwise experiments provide
accurate descriptions of the data (Fig. 2C, Figs. S9–S15, and
Table S2). Interestingly, although most pairs of drugs interact
either synergistically or antagonistically, we found that some
three-drug combinations, such as doxycycline-erythromycin-
lincomycin, act almost independently in larger combinations,
whereas others, such as chloramphenicol-salicylate-ofloxacin,

display extremely strong interactions and deviate significantly
from Bliss independence (Fig. S9). Using standard model selec-
tion techniques (SI Appendix, Fig. S10), we verified that the Bliss
independence model may be applicable for select drug combi-
nations, but as a whole, the pairwise model (R2 = 0.90) performs
significantly better than the independent model (R2 = 0.33) for
describing the effects of three or four drugs in combination (Figs.
S11–S15). In addition to the previous results, which include drug
combinations over a large range of drug dosages, we also surveyed
various multidrug interactions by performing five combinatorial
experiments yielding 93 unique three-drug combinations and
a total of 120 unique dosage combinations (SI Appendix, Figs. S16
and S17 and Table S3). We included a large range of drug types,
including pain relievers, food preservatives, and inhibitors of DNA
synthesis, folic acid synthesis, cell wall synthesis, and protein syn-
thesis. Again, the pairwise model (R2 = 0.95) significantly out-
performs the independent model (R2 = 0.29) and provides an
excellent description of the data. Overall, these results suggest
that for a wide range of antimicrobial drugs, the net effect of
a drug combination is dominated by the accumulation of pairwise
drug interactions, independent of the modes of action of the
specific drugs involved.

Effects of Three-Drug Combinations in Staphylococcus aureus. Be-
cause this approach does not rely on assumptions about molec-
ular mechanisms, it should then be applicable to other bacterial
species. As a model system, we used the bacterium Staphylo-
coccus aureus, a common source of clinical infections. S. aureus
are Gram-positive bacteria whose response to antibiotics differ
substantially from that of E. coli (15). As for E. coli, we first
measured the growth of S. aureus in response to three drugs:
tetracycline, kanamycin, and erythromycin. All three drugs in-
hibit protein synthesis via different mechanisms. We performed
the measurements for all drugs alone, and then repeated the
measurement for all pairs of drugs.
Using the single drug and pairwise measurements, we then

estimated the distribution Ppair(x), which allowed us to calculate
the expectation of the growth response to the three-drug com-
bination. We tested these predictions by comparing them with
direct measurements of S. aureus growth in the presence of
all three drugs. Remarkably, Fig. 2D demonstrates that the
mechanism-independent framework correctly predicts the experi-
mentally measured growth response to multidrug exposure in
S. aureus based solely on the responses to single and drug pairs.

Quantifying the Contribution of Pairwise Interactions to the Multidrug
Response. Overall, these results suggest that the integrated growth
response of bacteria to three-drug and four-drug combinations can
be directly inferred from the measured interactions between drug
pairs. The data and the predictions are in excellent agreement,
and the pairwise model performs significantly better than the Bliss
independence model according to model selection techniques.
However, the maximum entropy framework (16, 17) provides an
additional metric that allows us to further quantify exactly how
well the pairwise model captures deviations from independence.
To do so, we used the maximum entropy distributions Pi (i = 1,2,3),
which are consistent with the measured effects of all combinations
composed of up to i drugs, to calculate the fraction of total cor-
relations, fc, captured by the pairwise hypothesis (Table S4).
Strikingly, this analysis demonstrates that there is very little addi-
tional information (∼3%) encapsulated by pure three-drug inter-
actions. The answer to our original question is therefore surprising:
the combined effects of these three-drug combinations follow
almost entirely from the effects of the drugs alone and in pairs.

How Exactly Do Pairwise Interactions Accumulate? Our results
demonstrate that for a large variety of antimicrobial drug com-
binations, no new apparent chemical interactions arise when
three or four drugs are combined together. Instead, the net effect
of the drug combination arises from the cumulative effect of
the pairwise interactions. Given this drastic simplification, what
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outcomes are possible when drugs are combined at specific dos-
ages? Surprisingly, there are still numerous ways that pairwise
interactions can be combined to yield higher-order drug combi-
nations (Fig. 3), even without requiring novel three-drug or four-
drug effects. For example, weak synergistic interactions between
drug pairs, such as those between chloramphenicol and erythro-
mycin or erythromycin and trimethoprim, can combine to yield
a cumulative effect that is strongly synergistic at particular doses
(Fig. 3A). Conversely, as we saw, with the initial example of
chloramphenicol, ofloxacin, and trimethoprim (Fig. 3B), that
strong pairwise drug–drug interactions can combine to yield a
cumulative drug effect weaker than or similar to the strongest

pairwise interaction (Fig. 3D). In the case of salicylate, chloram-
phenicol, and ofloxacin, which interact antagonistically when used
in pairs, the net result is an antagonistic three-drug effect whose
magnitude is similar to that of the pure salicylate–ofloxacin in-
teraction (Fig. 3C). In all cases, the net effect can be predicted
using only the response to drug pairs (Fig. 3 A–F), illustrating that
a wide range of cumulative effects are possible, depending on the
dosages of each drug, even in the absence of pure three-drug or
four-drug interactions. Overall, these results offer a mechanism-
independent framework for predicting the cooperative effect of
drug combinations on bacterial growth using only the information
from the response to isolated drugs and drug pairs.

A B

C D

Fig. 2. Three- and four-drug interactions arise from the accumulation of pairwise interactions. Maximum entropy predictions of growth, using only data
from pairwise drug interactions, match experimental growth responses in E. coli (A–C ) and S. aureus (D) in the presence of three-drug (A, B, and D)
and four-drug (C ) combinations. In each panel, Lower Insets are heat maps showing the model’s predictions (left) and experimental data (right) for
various planes through the three- or four-dimensional spaces of drug concentrations. White squares indicate drug dosages for which the maximum
entropy algorithm did not converge. Experimental error bars and 95% confidence intervals from nonlinear fitting are shown; error bars on predictions
are shown, ±2 SDs of an ensemble of predictions from maximum entropy distributions calculated with random initial conditions (SI Appendix).
Cm, chloramphenicol; Dox, doxycycline; Ery, erythromycin; Kan, kanamycin; Linc, lincomycin; Ofl, ofloxacin; Sal, salicylate; Tet, tetracycline; Tmp,
trimethoprim.
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Discussion
Our experiments reveal that, for many antimicrobial drug com-
binations, interactions involving exactly three or more drugs do
not appreciably contribute to the overall effect of the combination.
The results are complementary to detailed mechanistic models
because they impose an upper limit on how much mechanistic
information is required to predict bacterial growth. Mechanistic
and empirical approaches remain essential to characterize the
effects of specific drug pairs (18–23). Remarkably, however, our
results reveal that additional information is often not required to
predict the effects of larger combinations of drugs. Consequently,
these findings may provide a powerful strategy for the rational
design of candidate therapies using combinations of three or more
drugs, even when full mechanistic descriptions are not available.
Nevertheless, the approach does have practical limitations.

First, the distribution Ppair(x) (or equivalently, the single drug
and two-drug effects, gi, and gij) measured for a particular bac-
terial strain cannot, in general, be used to predict the multidrug
response in a different strain. Using this approach to screen for
multidrug combinations to combat drug-resistant mutants, for
example, would require measurements of the relevant two-drug
effects in each specific strain. Second, it is important to note that
we chose maximum entropy as a systematic way to incorporate
deviations from Bliss independence without adding spurious sta-
tistical structure. However, there may exist other pairwise models
that could also be used to estimate the effects of larger drug
combinations. Our primary finding is that at least one such
pairwise model exists that provides excellent predictive power.
Finally, one can design ad hoc examples in which any pairwise
model is likely to fail. For example, if one drug were an enzyme
that required two substrates, then the combination of the enzyme
with both substrates might yield a completely novel three-body

interaction that could not be predicted from the pairwise effects.
Interestingly, however, we do not find evidence for such strong
three-body interactions in any of our experiments.
Previous studies have also used pairwise approximations in

other contexts, but the underlying variables represented the dy-
namics of specific cellular components or other physical entities
such as proteins or neurons (24–30). Most notably, a recent study
in cancer cells demonstrated that the expression of some proteins
in response to combinations of drugs can be predicted from their
responses to smaller drug combinations (24). Elucidating the
biological connection between these results, at the level of in-
dividual proteins, and the integrated responses of entire cells,
such as growth, remains an intriguing issue for future work.
Unfortunately, fully mechanistic models of the transcriptional,
metabolic, and posttranslational networks governing the multi-
drug response may be intractable, highlighting the need for
phenomenological or statistical models to bridge this gap. To
circumvent the difficulties associated with building a mechanistic
model, we have formulated the problem using a mechanism-
independent statistical approach. By using coarse-grained sto-
chastic variables, Xi, whose moments <X1..Xn> reflect the
effects of a combination of N drugs, we have replaced large,
intractable mechanistic models with a remarkably small statisti-
cal model of interacting drugs. Although the variables do not
have a direct microscopic interpretation, they do offer a very
powerful tool for inferring the relationship between the N-drug
response and the response to drug pairs. Moreover, we find that
simple formulas can yield accurate predictions as well, making
the approach widely applicable and easy to implement. From
a basic science perspective, the picture emerging from our
analysis is surprising because it suggests that the chemical com-
plexity underlying the cellular response to drug combinations

Fig. 3. Predictions highlight ways that pairwise interactions accumulate to yield higher-order interactions. Total drug interactions and pairwise drug
interactions for three-drug (A–D) and four-drug (E and F) combinations in E. coli (A–C, E, and F) and S. aureus (D). Each panel shows pairwise (all panels, left,
I-ij = gij-gigj and three-drug (A–D, right, g123-g1g2g3) or four-drug (E and F, right, g1234-g1g2g3g4) interactions at a given drug dosage. Light bars indicate
maximum entropy prediction; dark bars indicate experimental result. Shaded portions of each plot indicate regions of approximately additive behavior (add,
jinteractionj < 0.1). In all panels, antagonism (antag) and synergy (syn) labels correspond to interactions of +0.3 and −0.3, respectively. Error bars are
shown, ±SE (SI Appendix). Interactions that cannot be statistically explained from the pairwise predictions are less than 0.05 (units of relative growth
rate) in all cases (Fig. S17). Drug combinations: A, chloramphenicol-erythromycin-trimethoprim; B, chloramphenicol-ofloxacin-trimethoprim; C, chloramphenicol-
ofloxacin-salicylate; D, kanamycin-erythromycin-tetracycline; E, doxycycline-erythromycin-lincomycin-salicylate; F, chloramphenicol-ofloxacin-trimethoprim-lincomycin.
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often does not exceed that of drug pairs. These findings there-
fore raise the possibility that the multidrug response in bacteria
obeys statistical, rather than chemical, laws for combinations
larger than two. Finally, because our findings do not depend on
details of any specific cellular system, they offer a powerful
predictive framework that may be applicable to other bacteria
and even to eukaryotes.

Methods
Bacterial Strains. We used the WT BW25113 strain for all experiments on
E. coli (Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-, rph-1, Δ(rhaD-rhaB)568,
hsdR514) (31). We used the clinically isolated strain Newman for all experi-
ments on S. aureus (32).

Drugs. We prepared all drug solutions from solid stocks (Table S1 lists drugs,
their classes, and their mode of action). All antibiotic stock solutions were
stored in the dark at −20 °C in single-use daily aliquots. All drugs were
thawed and diluted in sterilized broth for experimental use.

Media. We used Lennox LB broth (Fisher) for experiments on E. coli and
Tryptic Soy Broth (BD) for experiments on S. aureus.

Growth Conditions and Drug Treatments. For both E. coli and S. aureus
experiments, we inoculated 3mL fresh mediumwith a single colony and grew
the cells overnight (12 h) in 14-mL culture tubes at 30 °C, with shaking at
200 rpm. Following overnight growth, stationary phase cells were diluted
(5,000-fold for E. coli, 20,000 fold for S. aureus) in medium and grown for an
additional 2 h at 30 °C, with shaking at 200 rpm. We then transferred 195 μL
cells plus medium to 96-well plates (round-bottomed, polystyrene; Corning),
and to each well we added a given combination of one, two, three, or four
drugs. Specifically, we set up a 2D matrix of one-, two-, three-, or four-drug
combinations, with the concentration of one or more drugs increasing along

each direction of the plate. In the presence of the drugs, we grew the cells for
10–18 h at 30 °C, with shaking at 1,000 rpm on four identical vibrating plate
shakers. We measured the absorbance at 600 nm (A600) at time intervals dt
(dt = 20 min for E. coli, 30 min for S. aureus) using a Wallac Victor-2 1420
Multilabel Counter (Perkin-Elmer) combined with an automated robotic sys-
tem (Twister II, Caliper Life Sciences) to transfer plates between shakers and
the reader.

Growth Rate Calculation. From the time series of A600, we determined growth
rates by fitting the early exponential phase portion of curves (0.01 < A600

<0.1) to an exponential function (MATLAB 7.6.0 curve fitting toolbox,
Mathworks). We normalized growth rates in the presence of single drugs (gi)
or multiple drugs (gij, gijk, gijkl) by the growth rate of cells in the absence of
drugs. An example growth curve is shown in Fig. S1. SEs of the fitted growth
parameter are used to estimate uncertainty in growth rates.

To minimize the small effects of day-to-day fluctuations in drug efficacy
(typically <5%), we generated a standard dose–response curve (and IC50

value) for each drug by combining all data involving only exposure to that
drug. In all subsequent three and four-drug experiments, we remeasured the
IC50 value for each drug and scaled all concentrations to ensure that it agreed
with the IC50 from the standard curve. Single drug (gi) and pairwise (gij) growth
rates at a given set of concentrations were then estimated by interpolating, if
necessary, between data points measured at nearby concentrations.
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